
Zheng Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3447782/publications.pdf Version: 2024-02-01

ZHENC YL

#	Article	IF	CITATIONS
1	In Situ Revealing the Electroactivity of PO and PC Bonds in Hard Carbon for Highâ€Capacity and Long‣ife Li/Kâ€ŀon Batteries. Advanced Energy Materials, 2019, 9, 1901676.	10.2	202
2	Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale, 2018, 10, 13236-13241.	2.8	125
3	A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes. Energy Storage Materials, 2019, 17, 93-100.	9.5	113
4	Waterâ€Induced Growth of a Highly Oriented Mesoporous Graphitic Carbon Nanospring for Fast Potassiumâ€Ion Adsorption/Intercalation Storage. Angewandte Chemie - International Edition, 2019, 58, 18108-18115.	7.2	106
5	Self-templating growth of Sb ₂ Se ₃ @C microtube: a convention-alloying-type anode material for enhanced K-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12283-12291.	5.2	96
6	Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes. Journal of Power Sources, 2016, 331, 16-21.	4.0	91
7	TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage. Chemical Engineering Journal, 2018, 347, 214-222.	6.6	89
8	SnO ₂ Quantum Dots: Rational Design to Achieve Highly Reversible Conversion Reaction and Stable Capacities for Lithium and Sodium Storage. Small, 2020, 16, e2000681.	5.2	87
9	Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Storage Materials, 2019, 20, 46-54.	9.5	78
10	Facile fabrication of SnO ₂ @TiO ₂ core–shell structures as anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 12850-12857.	5.2	76
11	Controllable fabrication of C/Sn and C/SnO/Sn composites as anode materials for high-performance lithium-ion batteries. Chemical Engineering Journal, 2017, 330, 1035-1043.	6.6	76
12	Snâ€based Intermetallic Compounds for Liâ€ion Batteries: Structures, Lithiation Mechanism, and Electrochemical Performances. Energy and Environmental Materials, 2018, 1, 132-147.	7.3	68
13	Large‣cale Fabrication of Core–Shell Structured C/SnO ₂ Hollow Spheres as Anode Materials with Improved Lithium Storage Performance. Small, 2017, 13, 1701993.	5.2	66
14	Two-step oxidation of bulk Sb to one-dimensional Sb2O4 submicron-tubes as advanced anode materials for lithium-ion and sodium-ion batteries. Chemical Engineering Journal, 2017, 315, 101-107.	6.6	64
15	Facile synthesis of symmetric bundle-like Sb ₂ S ₃ micron-structures and their application in lithium-ion battery anodes. Chemical Communications, 2016, 52, 7691-7694.	2.2	55
16	Sulfur-Mediated Interface Engineering Enables Fast SnS Nanosheet Anodes for Advanced Lithium/Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 25786-25797.	4.0	53
17	One-pot chemical route for morphology-controllable fabrication of Sn-Sb micro/nano-structures: Advanced anode materials for lithium and sodium storage. Journal of Power Sources, 2017, 342, 861-871.	4.0	49
18	Porous Si/C microspheres decorated with stable outer carbon interphase and inner interpenetrated Si@C channels for enhanced lithium storage. Carbon, 2019, 149, 664-671.	5.4	49

Zheng Yi

#	Article	IF	CITATIONS
19	Self-wrinkled graphene as a mechanical buffer: A rational design to boost the K-ion storage performance of Sb2Se3 nanoparticles. Chemical Engineering Journal, 2020, 379, 122352.	6.6	49
20	Mechanical Pressing Route for Scalable Preparation of Microstructured/Nanostrutured Si/Graphite Composite for Lithium Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 14230-14238.	3.2	42
21	Revealing the Doubleâ€Edged Behaviors of Heteroatom Sulfur in Carbonaceous Materials for Balancing Kâ€Storage Capacity and Stability. Advanced Functional Materials, 2021, 31, 2006875.	7.8	42
22	One-step synthesis of Ni3Sn2@reduced graphene oxide composite with enhanced electrochemical lithium storage properties. Electrochimica Acta, 2016, 192, 188-195.	2.6	39
23	Preparation of bamboo carbon fiber and sandwich-like bamboo carbon fiber@SnO2@carbon composites and their potential application in structural lithium-ion battery anodes. Journal of Alloys and Compounds, 2017, 709, 227-233.	2.8	39
24	Stabilizing Si/graphite composites with Cu and <i>in situ</i> synthesized carbon nanotubes for high-performance Li-ion battery anodes. Inorganic Chemistry Frontiers, 2018, 5, 1463-1469.	3.0	38
25	A novel strategy to prepare Sb thin film sandwiched between the reduced graphene oxide and Ni foam as binder-free anode material for lithium-ion batteries. Electrochimica Acta, 2016, 190, 804-810.	2.6	36
26	Synthesis and performances of carbon fiber@Co3O4 based on metal organic frameworks as anode materials for structural lithium-ion battery. Journal of Electroanalytical Chemistry, 2017, 807, 196-202.	1.9	35
27	Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode. Nano Research, 2018, 11, 6294-6303.	5.8	35
28	Ultrathin SnO2 nanosheets anchored on graphene with improved electrochemical kinetics for reversible lithium and sodium storage. Applied Surface Science, 2019, 484, 646-654.	3.1	29
29	A rational design to buffer volume expansion of CoSn intermetallic in lithium and sodium storage: Multicore-shell versus monocore-shell. Energy Storage Materials, 2019, 23, 629-635.	9.5	26
30	PAN-based carbon fiber@SnO2 for highly reversible structural lithium-ion battery anode. Ionics, 2018, 24, 1049-1055.	1.2	24
31	Amidationâ€Dominated Reâ€Assembly Strategy for Singleâ€Atom Design/Nanoâ€Engineering: Constructing Ni/S/C Nanotubes with Fast and Stable Kâ€Storage. Angewandte Chemie - International Edition, 2020, 59, 6459-6465.	7.2	23
32	An Al ₂ O ₃ coating layer on mesoporous Si nanospheres for stable solid electrolyte interphase and high-rate capacity for lithium ion batteries. Nanoscale, 2019, 11, 16781-16787.	2.8	22
33	Meso-porous amorphous Ge: Synthesis and mechanism of an anode material for Na and K storage. Nano Research, 2019, 12, 1824-1830.	5.8	22
34	Nanostructured Carbon/Antimony Composites as Anode Materials for Lithiumâ€lon Batteries with Long Life. Chemistry - an Asian Journal, 2016, 11, 2173-2180.	1.7	21
35	Fabrication of One-Dimensional Sb@TiO ₂ Composites as Anode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A2641-A2646.	1.3	21
36	Multifunctional sulfur-mediated strategy enabling fast-charging Sb ₂ S ₃ micro-package anode for lithium-ion storage. Journal of Materials Chemistry A, 2021, 9, 7838-7847.	5.2	21

Zheng Yi

#	Article	IF	CITATIONS
37	Simple preparation of Cu ₆ Sn ₅ /Sn composites as anode materials for lithium-ion batteries. RSC Advances, 2016, 6, 15279-15285.	1.7	19
38	2D interspace confined growth of ultrathin MoS2-intercalated graphite hetero-layers for high-rate Li/K storage. Nano Research, 2021, 14, 1061-1068.	5.8	19
39	Cu3Ge/Ge@C nanocomposites crosslinked by the in situ formed carbon nanotubes for high-rate lithium storage. Chemical Engineering Journal, 2018, 352, 206-213.	6.6	17
40	Revealing Quasi-1D Volume Expansion in Na-/K-Ion Battery Anodes: A Case Study of Sb ₂ O ₃ Microbelts. CCS Chemistry, 2021, 3, 1306-1315.	4.6	17
41	Edge-Plane Exposed N-Doped Carbon Nanofibers Toward Fast K-Ion Adsorption/Diffusion Kinetics for K-Ion Capacitors. CCS Chemistry, 2020, 2, 495-506.	4.6	17
42	Waterâ€Induced Growth of a Highly Oriented Mesoporous Graphitic Carbon Nanospring for Fast Potassiumâ€Ion Adsorption/Intercalation Storage. Angewandte Chemie, 2019, 131, 18276-18283.	1.6	16
43	Synthesis of polygonal Co ₃ Sn ₂ nanostructure with enhanced magnetic properties. RSC Advances, 2016, 6, 39818-39822.	1.7	13
44	Coordinatively and Spatially Coconfining High-Loading Atomic Sb in Sulfur-Rich 2D Carbon Matrix for Fast K ⁺ Diffusion and Storage. , 2021, 3, 790-798.		10
45	Gd–Sn alloys and Gd–Sn–graphene composites as anode materials for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 7992-7997.	1.4	9
46	RE–Sn (RE = Y, Ce and Gd) alloys as anode materials for lithium-ion batteries. New Journal of Chemistry, 2018, 42, 11525-11529.	1.4	8
47	Metallothermic Reduction of Molten Adduct [PCl4+][AlCl4–] at 50 °C to Amorphous Phosphorus or Crystallized Phosphides. ACS Applied Materials & Interfaces, 2018, 10, 42469-42474.	4.0	5
48	Amidationâ€Dominated Reâ€Assembly Strategy for Singleâ€Atom Design/Nanoâ€Engineering: Constructing Ni/S/C Nanotubes with Fast and Stable Kâ€Storage. Angewandte Chemie, 2020, 132, 6521-6527.	1.6	1