David P Aucoin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3447741/publications.pdf

Version: 2024-02-01

42 papers 974 citations

567281 15 h-index 30 g-index

44 all docs

44 docs citations

44 times ranked 1095 citing authors

#	Article	IF	CITATIONS
1	Pharmacological Profiling of Antifentanyl Monoclonal Antibodies in Combination with Naloxone in Pre- and Postexposure Models of Fentanyl Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2022, 381, 129-136.	2.5	11
2	Development of a dual antigen lateral flow immunoassay for detecting Yersinia pestis. PLoS Neglected Tropical Diseases, 2022, 16, e0010287.	3.0	4
3	A Compact and Sensitive Time-Resolved-Optical Reader for Bioassay Using Low-Energy Excitable and Long-Lived-Fluorescence Nanolabels. , 2022, 6, 1-4.		3
4	On the Environmental Presence of Burkholderia pseudomallei in South-Central Ghana. Applied and Environmental Microbiology, 2022, 88, .	3.1	3
5	Genomic surveillance of Nevada patients revealed prevalence of unique SARS-CoV-2 variants bearing mutations in the RdRp gene. Journal of Genetics and Genomics, 2021, 48, 40-51.	3.9	19
6	Critical Comparison between Large and Mini Vertical Flow Immunoassay Platforms for <i>Yersinia Pestis</i> Detection. Analytical Chemistry, 2021, 93, 9337-9344.	6. 5	13
7	Development of Immunoassays for Detection of Francisella tularensis Lipopolysaccharide in Tularemia Patient Samples. Pathogens, 2021, 10, 924.	2.8	6
8	Evaluation of antigen-detecting and antibody-detecting diagnostic test combinations for diagnosing melioidosis. PLoS Neglected Tropical Diseases, 2021, 15, e0009840.	3.0	10
9	A Highly Sensitive Time-Gated Fluorescence Immunoassay Platform Using Mn-Doped AgZnInS/ZnS Nanocrystals as Signal Transducers. Frontiers in Physics, 2021, 8, .	2.1	1
10	Monoclonal Antibodies Counteract Opioid-Induced Behavioral and Toxic Effects in Mice and Rats. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 469-477.	2.5	33
11	Immunoassay using dendritic Au-Pt nanoparticles as signal labels for detection of the biomarker of Burkholderia pseudomallei. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	2
12	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. PLoS Neglected Tropical Diseases, 2020, 14, e0008817.	3.0	8
13	Burkholderia pseudomallei Detection among Hospitalized Patients, Sarawak. American Journal of Tropical Medicine and Hygiene, 2020, 102, 388-391.	1.4	8
14	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. , 2020, 14, e0008817.		0
15	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. , 2020, 14, e0008817.		O
16	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. , 2020, 14, e0008817.		0
17	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. , 2020, 14, e0008817.		O
18	Paper-based Vertical Flow Immunoassay (VFI) for detection of bio-threat pathogens. Talanta, 2019, 191, 81-88.	5 . 5	58

#	Article	IF	CITATIONS
19	Immunoglobulin G subclass switching impacts sensitivity of an immunoassay targeting Francisella tularensis lipopolysaccharide. PLoS ONE, 2018, 13, e0195308.	2.5	5
20	Sensitivity and specificity of a lateral flow immunoassay (LFI) in serum samples for diagnosis of melioidosis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2018, 112, 568-570.	1.8	11
21	Evaluation of a Rapid Diagnostic Test for Detection of Burkholderia pseudomallei in the Lao People's Democratic Republic. Journal of Clinical Microbiology, 2018, 56, .	3.9	31
22	Performance evaluation of Active Melioidosis Detect-Lateral Flow Assay (AMD-LFA) for diagnosis of melioidosis in endemic settings with limited resources. PLoS ONE, 2018, 13, e0194595.	2.5	29
23	Thermoregulation of Biofilm Formation in Burkholderia pseudomallei Is Disrupted by Mutation of a Putative Diguanylate Cyclase. Journal of Bacteriology, 2017, 199, .	2.2	36
24	Deciphering minimal antigenic epitopes associated with Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharide O-antigens. Nature Communications, 2017, 8, 115.	12.8	42
25	Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster. PLoS Neglected Tropical Diseases, 2017, 11, e0005689.	3.0	19
26	Development of Immunoassays for Burkholderia pseudomallei Typical and Atypical Lipopolysaccharide Strain Typing. American Journal of Tropical Medicine and Hygiene, 2017, 96, 358-367.	1.4	9
27	Utility of a Lateral Flow Immunoassay (LFI) to Detect Burkholderia pseudomallei in Soil Samples. PLoS Neglected Tropical Diseases, 2016, 10, e0005204.	3.0	7
28	Contribution of murine IgG Fc regions to antibody binding to the capsule ofBurkholderia pseudomallei. Virulence, 2016, 7, 691-701.	4.4	9
29	Towards Development of Improved Serodiagnostics for Tularemia by Use of Francisella tularensis Proteome Microarrays. Journal of Clinical Microbiology, 2016, 54, 1755-1765.	3.9	13
30	Pasteur revisited: An unexpected finding in <i>Bacillus anthracis</i> vaccine strains. Virulence, 2016, 7, 506-507.	4.4	2
31	In vivo Distribution and Clearance of Purified Capsular Polysaccharide from Burkholderia pseudomallei in a Murine Model. PLoS Neglected Tropical Diseases, 2016, 10, e0005217.	3.0	15
32	Rapid diagnostics for melioidosis: a comparative study of a novel lateral flow antigen detection assay. Journal of Medical Microbiology, 2015, 64, 845-848.	1.8	36
33	<i>Burkholderia pseudomallei</i> Capsular Polysaccharide Recognition by a Monoclonal Antibody Reveals Key Details toward a Biodefense Vaccine and Diagnostics against Melioidosis. ACS Chemical Biology, 2015, 10, 2295-2302.	3.4	36
34	Development of a Prototype Lateral Flow Immunoassay (LFI) for the Rapid Diagnosis of Melioidosis. PLoS Neglected Tropical Diseases, 2014, 8, e2727.	3.0	93
35	IgG Subclass and Heavy Chain Domains Contribute to Binding and Protection by mAbs to the Poly Î ³ -D-glutamic Acid Capsular Antigen of Bacillus anthracis. PLoS Pathogens, 2013, 9, e1003306.	4.7	34
36	Polysaccharide Specific Monoclonal Antibodies Provide Passive Protection against Intranasal Challenge with Burkholderia pseudomallei. PLoS ONE, 2012, 7, e35386.	2.5	42

#	Article	IF	CITATION
37	Identification of Circulating Bacterial Antigens by <i>In Vivo</i> Microbial Antigen Discovery. MBio, 2011, 2, .	4.1	35
38	Identification of Burkholderia cepacia complex bacteria with a lipopolysaccharide-specific monoclonal antibody. Journal of Medical Microbiology, 2010, 59, 41-47.	1.8	5
39	Rapid detection of the poly-Î ³ -d-glutamic acid capsular antigen of Bacillus anthracis by latex agglutination. Diagnostic Microbiology and Infectious Disease, 2009, 64, 229-232.	1.8	12
40	Amplification of the Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 lytic origin of DNA replication is dependent upon a cis-acting AT-rich region and an ORF50 response element and the trans-acting factors ORF50 (K-Rta) and K8 (K-bZIP). Virology, 2004, 318, 542-555.	2.4	94
41	Kaposi's Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Contains Two Functional Lytic Origins of DNA Replication. Journal of Virology, 2002, 76, 7890-7896.	3.4	69
42	The human herpesvirus-8 (Kaposi's sarcoma-associated herpesvirus) ORF 40/41 region encodes two distinct transcripts. Journal of General Virology, 2002, 83, 189-193.	2.9	8