Joshua Lin Yuk Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3446919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells. Joule, 2019, 3, 3020-3033.	24.0	763
2	Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nature Materials, 2018, 17, 253-260.	27.5	556
3	High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy and Environmental Science, 2015, 8, 520-525.	30.8	379
4	A Tetraphenylethylene Coreâ€Based 3D Structure Small Molecular Acceptor Enabling Efficient Nonâ€Fullerene Organic Solar Cells. Advanced Materials, 2015, 27, 1015-1020.	21.0	362
5	Donor polymer design enables efficient non-fullerene organic solar cells. Nature Communications, 2016, 7, 13094.	12.8	328
6	Highâ€Performance Nonâ€Fullerene Polymer Solar Cells Based on a Pair of Donor–Acceptor Materials with Complementary Absorption Properties. Advanced Materials, 2015, 27, 7299-7304.	21.0	230
7	Efficient All-Polymer Solar Cells based on a New Polymer Acceptor Achieving 10.3% Power Conversion Efficiency. ACS Energy Letters, 2019, 4, 417-422.	17.4	196
8	Reduced Intramolecular Twisting Improves the Performance of 3D Molecular Acceptors in Nonâ€Fullerene Organic Solar Cells. Advanced Materials, 2016, 28, 8546-8551.	21.0	161
9	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie - International Edition, 2021, 60, 10137-10146.	13.8	145
10	Efficient non-fullerene polymer solar cells enabled by tetrahedron-shaped core based 3D-structure small-molecular electron acceptors. Journal of Materials Chemistry A, 2015, 3, 13632-13636.	10.3	100
11	Modulation of End Groups for Lowâ€Bandgap Nonfullerene Acceptors Enabling Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1801203.	19.5	99
12	A Chlorinated Donor Polymer Achieving Highâ€Performance Organic Solar Cells with a Wide Range of Polymer Molecular Weight. Advanced Functional Materials, 2021, 31, 2102413.	14.9	69
13	A Facile Method to Fineâ€Tune Polymer Aggregation Properties and Blend Morphology of Polymer Solar Cells Using Donor Polymers with Randomly Distributed Alkyl Chains. Advanced Energy Materials, 2018, 8, 1701895.	19.5	62
14	Random Polymerization Strategy Leads to a Family of Donor Polymers Enabling Wellâ€Controlled Morphology and Multiple Cases of Highâ€Performance Organic Solar Cells. Advanced Materials, 2020, 32, e2003500.	21.0	59
15	The influence of spacer units on molecular properties and solar cell performance of non-fullerene acceptors. Journal of Materials Chemistry A, 2015, 3, 20108-20112.	10.3	41
16	Tuning Energy Levels without Negatively Affecting Morphology: A Promising Approach to Achieving Optimal Energetic Match and Efficient Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1602119.	19.5	39
17	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie, 2021, 133, 10225-10234.	2.0	13
18	Organic Solar Cells: A Tetraphenylethylene Coreâ€Based 3D Structure Small Molecular Acceptor Enabling Efficient Nonâ€Fullerene Organic Solar Cells (Adv. Mater. 6/2015). Advanced Materials, 2015, 27, 1014-1014.	21.0	9

#	Article	IF	CITATIONS
19	Understanding the influence of carboxylate substitution on the property of high-performance donor polymers in non-fullerene organic solar cells. Materials Chemistry Frontiers, 2018, 2, 1360-1365.	5.9	9