Ali Mostafaeipour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3446641/publications.pdf Version: 2024-02-01

ALL MOSTAFAFIDOLID

#	Article	IF	CITATIONS
1	Blockchain Technology Application Challenges in Renewable Energy Supply Chain Management. Environmental Science and Pollution Research, 2023, 30, 72041-72058.	2.7	39
2	A new model for the use of renewable electricity to reduce carbon dioxide emissions. Energy, 2022, 238, 121602.	4.5	87
3	A conceptual new model for use of solar water heaters in hot and dry regions. Sustainable Energy Technologies and Assessments, 2022, 49, 101710.	1.7	10
4	Investigating performance of a new design of forced convection solar dryer. Sustainable Energy Technologies and Assessments, 2022, 50, 101863.	1.7	10
5	Predicting effect of floating photovoltaic power plant on water loss through surface evaporation for wastewater pond using artificial intelligence: A case study. Sustainable Energy Technologies and Assessments, 2022, 50, 101849.	1.7	13
6	DYNAMIC SIMULATION AND RANKING OF USING RESIDENTIAL-SCALE SOLAR WATER HEATER IN IRAN. Journal of Environmental Engineering and Landscape Management, 2022, 30, 30-42.	0.4	8
7	A Thorough Economic Evaluation by Implementing Solar/Wind Energies for Hydrogen Production: A Case Study. Sustainability, 2022, 14, 1177.	1.6	22
8	Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach. Renewable Energy, 2022, 186, 889-903.	4.3	24
9	Impact of economic and government investment in residential solar power plant on energy system sustainability. Sustainable Energy Technologies and Assessments, 2022, 52, 102050.	1.7	5
10	Determination of optimal renewable energy growth strategies using <scp>SWOT</scp> analysis, hybrid <scp>MCDM</scp> methods, and game theory: A case study. International Journal of Energy Research, 2022, 46, 6766-6789.	2.2	38
11	A Critical Review of Short-Term Water Demand Forecasting Tools—What Method Should I Use?. Sustainability, 2022, 14, 5412.	1.6	21
12	Novel Based Ensemble Machine Learning Classifiers for Detecting Breast Cancer. Mathematical Problems in Engineering, 2022, 2022, 1-16.	0.6	4
13	An economic investigation of the wind-hydrogen projects: A case study. International Journal of Hydrogen Energy, 2022, 47, 25880-25898.	3.8	12
14	Technical, environmental and ranking analysis of using solar heating: A case study in South Africa. Sustainable Energy Technologies and Assessments, 2022, 52, 102299.	1.7	6
15	Investigating the performance of Hadoop and Spark platforms on machine learning algorithms. Journal of Supercomputing, 2021, 77, 1273-1300.	2.4	50
16	Economic assessment of hydrogen production from sea water using wind energy: A case study. Wind Engineering, 2021, 45, 1002-1019.	1.1	6
17	Techno-enviro assessment and ranking of Turkey for use of home-scale solar water heaters. Sustainable Energy Technologies and Assessments, 2021, 43, 100948.	1.7	17
18	A novel integrated approach for ranking solar energy location planning: a case study. Journal of Engineering, Design and Technology, 2021, 19, 698-720.	1.1	16

#	Article	IF	CITATIONS
19	Current trends and prospects of tidal energy technology. Environment, Development and Sustainability, 2021, 23, 8179-8194.	2.7	95
20	Performance of different hybrid algorithms for prediction of wind speed behavior. Wind Engineering, 2021, 45, 245-256.	1.1	4
21	A Novel Policy to Optimize Energy Consumption for Dairy Product Warehouses: A Case Study. Sustainability, 2021, 13, 2445.	1.6	2
22	Social sustainability of treatment technologies for bioenergy generation from the municipal solid waste using best worst method. Journal of Cleaner Production, 2021, 288, 125592.	4.6	30
23	A new model for developing sustainable green industries: A case study of Mashhad, Iran. Journal of Renewable and Sustainable Energy, 2021, 13, 025902.	0.8	Ο
24	Ranking Locations for Hydrogen Production Using Hybrid Wind-Solar: A Case Study. Sustainability, 2021, 13, 4524.	1.6	35
25	Effect of Emission Penalty and Annual Interest Rate on Cogeneration of Electricity, Heat, and Hydrogen in Karachi: 3E Assessment and Sensitivity Analysis. Journal of Engineering (United States), 2021, 2021, 1-16.	0.5	11
26	Forecasting Rainfed Agricultural Production in Arid and Semi-Arid Lands Using Learning Machine Methods: A Case Study. Sustainability, 2021, 13, 4607.	1.6	15
27	Techno-Economic Investigation of Using Solar Energy for Heating Swimming Pools in Buildings and Producing Hydrogen: A Case Study. Frontiers in Energy Research, 2021, 9, .	1.2	7
28	A thorough investigation for development of hydrogen projects from wind energy: A case study. International Journal of Hydrogen Energy, 2021, 46, 18795-18815.	3.8	52
29	Performance optimization of a new flash-binary geothermal cycle for power/hydrogen production with zeotropic fluid. Journal of Thermal Analysis and Calorimetry, 2021, 145, 1633-1650.	2.0	27
30	Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy: A case study. Energy Strategy Reviews, 2021, 36, 100684.	3.3	62
31	Simulation of Wellbore Drilling Energy Saving of Nanofluids Using an Experimental Taylor–Couette Flow System. Journal of Petroleum Exploration and Production, 2021, 11, 2963-2979.	1.2	7
32	Identifying challenges and barriers for development of solar energy by using fuzzy best-worst method: A case study. Energy, 2021, 226, 120355.	4.5	45
33	Technoâ€economic analysis and energy performance of a geothermal earthâ€ŧoâ€∎ir heat exchanger (EAHE) system in residential buildings: A case study. Energy Science and Engineering, 2021, 9, 1807-1825.	1.9	8
34	Use of a Hybrid Wind—Solar—Diesel—Battery Energy System to Power Buildings in Remote Areas: A Case Study. Sustainability, 2021, 13, 8764.	1.6	40
35	Introducing a Rheology Model for Non-Newtonian Drilling Fluids. Geofluids, 2021, 2021, 1-14.	0.3	4
36	A thorough analysis of renewable hydrogen projects development in Uzbekistan using MCDM methods. International Journal of Hydrogen Energy, 2021, 46, 31174-31190.	3.8	37

#	Article	lF	CITATIONS
37	Investigation of implementing solar energy for groundwater desalination in arid and dry regions: A case study. Desalination, 2021, 512, 115039.	4.0	14
38	Location assessment for producing biodiesel fuel from Jatropha Curcas in Iran. Energy, 2021, 236, 121446.	4.5	16
39	A strategic model to identify the factors and risks of solar cooker manufacturing and use: A case study of Razavi Khorasan, Iran. Energy Strategy Reviews, 2021, 33, 100587.	3.3	6
40	Determine the Land-Use Land-Cover Changes, Urban Expansion and Their Driving Factors for Sustainable Development in Gazipur Bangladesh. Atmosphere, 2021, 12, 1353.	1.0	22
41	Implementing MCDM Techniques for Ranking Renewable Energy Projects under Fuzzy Environment: A Case Study. Sustainability, 2021, 13, 12858.	1.6	22
42	An Effective Evaluation on Fault Detection in Solar Panels. Energies, 2021, 14, 7770.	1.6	37
43	A practical framework for supplier selection decisions with an application to the automotive sector. International Journal of Production Research, 2020, 58, 2997-3014.	4.9	29
44	Sensitivity analysis of criteria to optimize wind farm localizing: A case study. Wind Engineering, 2020, 44, 294-312.	1.1	7
45	Feasibility analysis of a new tree-shaped wind turbine for urban application: A case study. Energy and Environment, 2020, 31, 1230-1256.	2.7	30
46	Prioritization of potential locations for harnessing wind energy to produce hydrogen in Afghanistan. International Journal of Hydrogen Energy, 2020, 45, 33169-33184.	3.8	58
47	Machine Learning for Prediction of Energy in Wheat Production. Agriculture (Switzerland), 2020, 10, 517.	1.4	22
48	Sensitivity analysis of using solar cells in regional electricity power supply of off-grid power systems in Iran. Journal of Engineering, Design and Technology, 2020, 18, 1849-1866.	1.1	15
49	A new hybrid decision-making framework to rank power supply systems for government organizations: A real case study. Sustainable Energy Technologies and Assessments, 2020, 41, 100779.	1.7	14
50	Wind and solar energy utilization for seawater desalination and hydrogen production in the coastal areas of southern Iran. Journal of Engineering, Design and Technology, 2020, 18, 1951-1969.	1.1	12
51	A thorough investigation of solar-powered hydrogen potential and accurate location planning for big cities: A case study. International Journal of Hydrogen Energy, 2020, 45, 31599-31611.	3.8	30
52	Statistical evaluation of using the new generation of wind turbines in South Africa. Energy Reports, 2020, 6, 2816-2827.	2.5	61
53	A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan. Sustainability, 2020, 12, 8397.	1.6	29
54	A new semi-empirical wind turbine capacity factor for maximizing annual electricity and hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 15888-15903.	3.8	31

4

#	Article	IF	CITATIONS
55	Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimization algorithm. Energy Reports, 2020, 6, 1147-1159.	2.5	112
56	Ranking locations for producing hydrogen using geothermal energy in Afghanistan. International Journal of Hydrogen Energy, 2020, 45, 15924-15940.	3.8	61
57	Location planning for production of bioethanol fuel from agricultural residues in the south of Caspian Sea. Environmental Development, 2020, 33, 100500.	1.8	14
58	Using fuzzy MCDM technique to find the best location in Qatar for exploiting wind and solar energy to generate hydrogen and electricity. International Journal of Hydrogen Energy, 2020, 45, 13862-13875.	3.8	98
59	Ranking Potential Renewable Energy Systems to Power On-Farm Fertilizer Production. Sustainability, 2020, 12, 7850.	1.6	9
60	Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study. Energy and Environment, 2019, 30, 44-62.	2.7	21
61	Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran. Frontiers in Energy, 2019, 13, 539-550.	1.2	39
62	Techno-econo-environmental optimal operation of grid-wind-solar electricity generation with hydrogen storage system for domestic scale, case study in Chad. International Journal of Hydrogen Energy, 2019, 44, 28613-28628.	3.8	65
63	Investigation of solar energy utilization for production of hydrogen and sustainable chemical fertilizer: A case study. International Journal of Energy Research, 2019, 43, 8314.	2.2	13
64	A new strategy for wind turbine selection using optimization based on rated wind speed. Energy Procedia, 2019, 160, 582-589.	1.8	21
65	Forecasting the wind power generation using Box–Jenkins and hybrid artificial intelligence. International Journal of Energy Sector Management, 2019, 13, 1038-1062.	1.2	33
66	Energy efficiency for cooling buildings in hot and dry regions using sol-air temperature and ground temperature effects. Journal of Engineering, Design and Technology, 2019, 17, 613-628.	1.1	14
67	Evaluation of hydrogen production by wind energy for agricultural and industrial sectors. International Journal of Hydrogen Energy, 2019, 44, 7983-7995.	3.8	58
68	Techno-economic assessment of using wind power system for tribal region of Gachsaran in Iran. Journal of Engineering, Design and Technology, 2019, 18, 293-307.	1.1	7
69	Investigation of accurate location planning for wind farm establishment: a case study. Journal of Engineering, Design and Technology, 2019, 18, 821-845.	1.1	5
70	Feasibility study on the provision of electricity and hydrogen for domestic purposes in the south of Iran using grid-connected renewable energy plants. Energy Strategy Reviews, 2019, 23, 23-32.	3.3	76
71	Assessment of solar-wind power plants in Afghanistan: A review. Renewable and Sustainable Energy Reviews, 2019, 99, 169-190.	8.2	81
72	Investigation of off-grid photovoltaic systems for a reverse osmosis desalination system: A case study. Desalination, 2019, 454, 91-103.	4.0	54

#	Article	IF	CITATIONS
73	Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran. Frontiers in Energy, 2019, 13, 494-505.	1.2	14
74	Investigation of wind farm location planning by considering budget constraints. International Journal of Sustainable Energy, 2018, 37, 799-817.	1.3	31
75	Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran. Energy and Environment, 2018, 29, 333-357.	2.7	31
76	Investigation of the optimal location design of a hybrid wind-solar plant: A case study. International Journal of Hydrogen Energy, 2018, 43, 100-114.	3.8	74
77	Feasibility of a Wind-Hydrogen Energy System Based on Wind Characteristics for Chabahar, Iran. Energy Harvesting and Systems, 2018, 4, 143-163.	1.7	4
78	A mathematical model for simultaneous optimization of renewable electricity price and construction of new wind power plants (case study: Kermanshah). International Journal of Energy and Environmental Engineering, 2018, 9, 71-80.	1.3	12
79	Investigation of the socio-economic feasibility of installing wind turbines to produce hydrogen: Case study. International Journal of Hydrogen Energy, 2018, 43, 23135-23147.	3.8	44
80	Rotating Machinery in Renewable Energy Systems. International Journal of Rotating Machinery, 2018, 2018, 1-2.	0.8	0
81	Optimized fixed tilt for incident solar energy maximization on flat surfaces located in the Algerian Big South. Sustainable Energy Technologies and Assessments, 2018, 28, 96-102.	1.7	44
82	Prediction of air travel demand using a hybrid artificial neural network (ANN) with Bat and Firefly algorithms: a case study. Journal of Supercomputing, 2018, 74, 5461-5484.	2.4	37
83	A comprehensive evaluation of hydrogen production from photovoltaic power station. Renewable and Sustainable Energy Reviews, 2018, 82, 415-423.	8.2	68
84	A recursive approach for lot sentencing problem in the presence of inspection errors. Communications in Statistics Part B: Simulation and Computation, 2017, 46, 2376-2392.	0.6	1
85	Implementing fuzzy rank function model for a new supply chain risk management. Journal of Supercomputing, 2017, 73, 3586-3602.	2.4	12
86	Prioritizing of wind farm locations for hydrogen production: A case study. International Journal of Hydrogen Energy, 2017, 42, 9500-9510.	3.8	77
87	Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran. Renewable and Sustainable Energy Reviews, 2017, 74, 835-847.	8.2	16
88	Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study. Renewable and Sustainable Energy Reviews, 2017, 78, 113-123.	8.2	131
89	Investigating the factors on using the solar water heaters for dry arid regions: A case study. Renewable and Sustainable Energy Reviews, 2017, 78, 157-166.	8.2	14
90	Determination of rated wind speed for maximum annual energy production of variable speed wind turbines. Applied Energy, 2017, 205, 781-789.	5.1	75

#	Article	IF	CITATIONS
91	A novel enhanced exergy method in analyzing HVAC system using soft computing approaches: A case study on mushroom growing hall. Journal of Building Engineering, 2017, 13, 309-318.	1.6	25
92	Energy saving evaluation of passive systems for residential buildings in hot and dry regions. Renewable and Sustainable Energy Reviews, 2017, 68, 432-446.	8.2	75
93	Worldwide wind energy status and the characteristics of wind energy in Iran, case study: the province of Sistan and Baluchestan. International Journal of Sustainable Energy, 2017, 36, 103-123.	1.3	17
94	Extreme learning machine for prediction of heat load in district heating systems. Energy and Buildings, 2016, 122, 222-227.	3.1	105
95	Evaluating the suitability of wind speed probability distribution models: A case of study of east and southeast parts of Iran. Energy Conversion and Management, 2016, 119, 101-108.	4.4	103
96	Sensitivity analysis of different wind speed distribution models with actual and truncated wind data: A case study for Kerman, Iran. Energy Conversion and Management, 2016, 120, 51-61.	4.4	68
97	Evaluation of wind power generation potential using a three hybrid approach for households in Ardebil Province, Iran. Energy Conversion and Management, 2016, 118, 295-305.	4.4	49
98	Feasibility of geothermal power assisted hydrogen production in Iran. International Journal of Hydrogen Energy, 2016, 41, 18351-18369.	3.8	48
99	Analysis of hydrogen production from wind energy in the southeast of Iran. International Journal of Hydrogen Energy, 2016, 41, 15158-15171.	3.8	67
100	Evaluating the wind energy potential for hydrogen production: A case study. International Journal of Hydrogen Energy, 2016, 41, 6200-6210.	3.8	89
101	Application and economic viability of wind turbine installation in Lutak, Iran. Environmental Earth Sciences, 2016, 75, 1.	1.3	8
102	Evaluation of installing photovoltaic plants using a hybrid approach for Khuzestan province, Iran. Renewable and Sustainable Energy Reviews, 2016, 60, 60-74.	8.2	46
103	A hybrid computational intelligence method for predicting dew point temperature. Environmental Earth Sciences, 2016, 75, 1.	1.3	19
104	Prediction of heat load in district heating systems by Support Vector Machine with Firefly searching algorithm. Energy, 2016, 95, 266-273.	4.5	103
105	Identifying the effective factors on implementing the solar dryers for Yazd province, Iran. Renewable and Sustainable Energy Reviews, 2016, 57, 765-775.	8.2	48
106	Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 2016, 108, 322-335.	4.4	229
107	Development of an Optimal Design for Conforming Run Length Sampling Methods in the Presence of Inspection Errors. Journal of Testing and Evaluation, 2016, 44, 1885-1891.	0.4	1
108	Implementing Fuzzy Logic and AHP into the EFQM model for performance improvement: A case study. Applied Soft Computing Journal, 2015, 36, 165-176.	4.1	35

#	Article	IF	CITATIONS
109	A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renewable and Sustainable Energy Reviews, 2015, 52, 1031-1042.	8.2	112
110	Feasibility of installing wind turbines for electricity generation in Jarandagh, Iran. , 2015, , .		1
111	Electricity Generation and Energy Cost Estimation of Large-Scale Wind Turbines in Jarandagh, Iran. Journal of Energy, 2014, 2014, 1-8.	1.4	35
112	Effect of Short-Term and Long-Term Persistence on Identification of Temporal Trends. Journal of Hydrologic Engineering - ASCE, 2014, 19, 617-625.	0.8	114
113	Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran. Energy, 2014, 67, 117-128.	4.5	58
114	An analysis of wind energy potential and economic evaluation in Zahedan, Iran. Renewable and Sustainable Energy Reviews, 2014, 30, 641-650.	8.2	147
115	A new linguistic based algorithm for creating manufacturing cell. International Journal on Interactive Design and Manufacturing, 2014, 8, 133-138.	1.3	0
116	Economic evaluation for cooling and ventilation of medicine storage warehouses utilizing wind catchers. Renewable and Sustainable Energy Reviews, 2014, 38, 12-19.	8.2	35
117	Application of factor analysis in defining drought prone areas in Lake Urmia Basin. Natural Hazards, 2013, 69, 267-277.	1.6	9
118	Economic evaluation of small wind turbine utilization in Kerman, Iran. Energy Conversion and Management, 2013, 73, 214-225.	4.4	64
119	Economic feasibility of developing wind turbines in Aligoodarz, Iran. Energy Conversion and Management, 2013, 76, 645-653.	4.4	73
120	Evaluation of wind energy potential as a power generation source for electricity production in Binalood, Iran. Renewable Energy, 2013, 52, 222-229.	4.3	84
121	Using different methods for comprehensive study of wind turbine utilization in Zarrineh, Iran. Energy Conversion and Management, 2013, 65, 463-470.	4.4	109
122	Historical background, productivity and technical issues of qanats. Water History, 2010, 2, 61-80.	0.5	54
123	Feasibility study of harnessing wind energy for turbine installation in province of Yazd in Iran. Renewable and Sustainable Energy Reviews, 2010, 14, 93-111.	8.2	110
124	Productivity and development issues of global wind turbine industry. Renewable and Sustainable Energy Reviews, 2010, 14, 1048-1058.	8.2	47
125	Feasibility study of offshore wind turbine installation in Iran compared with the world. Renewable and Sustainable Energy Reviews, 2010, 14, 1722-1743.	8.2	70
126	Wind Turbine Productivity and Development in Iran. , 2010, , .		21

#	Article	IF	CITATIONS
127	Renewable energy issues and electricity production in Middle East compared with Iran. Renewable and Sustainable Energy Reviews, 2009, 13, 1641-1645.	8.2	76
128	Harnessing wind energy at Manjil area located in north of Iran. Renewable and Sustainable Energy Reviews, 2008, 12, 1758-1766.	8.2	63
129	Optimization of capacity factors based on rated wind speeds of wind turbines. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-22.	1.2	8