Hiroyuki Kamao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3446254/publications.pdf

Version: 2024-02-01

759233 888059 2,324 19 12 17 h-index citations g-index papers 20 20 20 3285 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration. New England Journal of Medicine, 2017, 376, 1038-1046.	27.0	1,121
2	Characterization of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cell Sheets Aiming for Clinical Application. Stem Cell Reports, 2014, 2, 205-218.	4.8	538
3	Tumorigenicity Studies of Induced Pluripotent Stem Cell (iPSC)-Derived Retinal Pigment Epithelium (RPE) for the Treatment of Age-Related Macular Degeneration. PLoS ONE, 2014, 9, e85336.	2.5	154
4	Successful Transplantation of Retinal Pigment Epithelial Cells from MHC Homozygote iPSCs in MHC-Matched Models. Stem Cell Reports, 2016, 7, 635-648.	4.8	131
5	Evaluation of the Surgical Device and Procedure for Extracellular Matrix–Scaffold–Supported Human iPSC–Derived Retinal Pigment Epithelium Cell Sheet Transplantation. , 2017, 58, 211.		79
6	Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in <i>rd1</i> mice. Stem Cells, 2015, 33, 1543-1553.	3.2	59
7	Inhibition of T-Cell Activation by Retinal Pigment Epithelial Cells Derived From Induced Pluripotent Stem Cells. Investigative Ophthalmology and Visual Science, 2015, 56, 1051-1062.	3.3	56
8	Immunological aspects of RPE cell transplantation. Progress in Retinal and Eye Research, 2021, 84, 100950.	15.5	39
9	Pigment Epithelium-Derived Factor Secreted from Retinal Pigment Epithelium Facilitates Apoptotic Cell Death of iPSC. Scientific Reports, 2013, 3, 2334.	3.3	30
10	Detection of Retinal Pigment Epithelium-Specific Antibody in iPSC-Derived Retinal Pigment Epithelium Transplantation Models. Stem Cell Reports, 2017, 9, 1501-1515.	4.8	30
11	A point mutation in Semaphorin 4A associates with defective endosomal sorting and causes retinal degeneration. Nature Communications, 2013, 4, 1406.	12.8	21
12	Objective Evaluation of the Degree of Pigmentation in Human Induced Pluripotent Stem Cell-Derived RPE. Investigative Ophthalmology and Visual Science, 2014, 55, 8309-8318.	3.3	20
13	A Strategy for Personalized Treatment of iPS-Retinal Immune Rejections Assessed in Cynomolgus Monkey Models. International Journal of Molecular Sciences, 2020, 21, 3077.	4.1	16
14	A ROCK Inhibitor Promotes Graft Survival during Transplantation of iPS-Cell-Derived Retinal Cells. International Journal of Molecular Sciences, 2021, 22, 3237.	4.1	8
15	Mycoplasma Ocular Infection in Subretinal Graft Transplantation of iPS Cells-Derived Retinal Pigment Epithelial Cells., 2019, 60, 1298.		7
16	ROCK Inhibitor-Induced Promotion of Retinal Pigment Epithelial Cell Motility during Wound Healing. Journal of Ophthalmology, 2019, 2019, 1-10.	1.3	5
17	Effects of Smoking on Outcomes of Antivascular Endothelial Growth Factor Therapy in Patients with Neovascular Age-Related Macular Degeneration Smoking and Anti-VEGF Therapy in nAMD. Journal of Ophthalmology, 2018, 2018, 1-7.	1.3	4
18	Evaluation of Retinal Pigment Epithelial Cell Cytotoxicity of Recombinant Tissue Plasminogen Activator Using Human-Induced Pluripotent Stem Cells. Journal of Ophthalmology, 2019, 2019, 1-10.	1.3	3

#	Article	IF	CITATIONS
19	Clinical Characteristics of Neovascular Age-Related Macular Degeneration without Typical Drusen. Journal of Ophthalmology, 2021, 2021, 1-8.	1.3	3