
Xiao-Yi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3445757/publications.pdf Version: 2024-02-01

XIAO-YILI

#	Article	IF	CITATIONS
1	A 4H–SiC betavoltaic battery based on a \$\$^{extbf{63}}{extbf{Ni}}\$\$ 63 Ni source. Nuclear Science and Techniques/Hewuli, 2018, 29, 1.	3.4	23
2	Theoretical Prediction of Diamond Betavoltaic Batteries Performance Using ⁶³ Ni. Chinese Physics Letters, 2018, 35, 072301.	3.3	13
3	Comparison of time-related electrical properties of PN junctions and Schottky diodes for ZnO-based betavoltaic batteries. Nuclear Science and Techniques/Hewuli, 2020, 31, 1.	3.4	6
4	Measurement of neutron yield and angular distribution for D-T neutron generator by neutron activation analysis method. Applied Radiation and Isotopes, 2020, 156, 108971.	1.5	4
5	Exploratory study of betavoltaic battery using ZnO as the energy converting material. Nuclear Science and Techniques/Hewuli, 2019, 30, 1.	3.4	3
6	Measurement of talc in flour by the prompt-gamma ray neutron activation analysis method. Applied Radiation and Isotopes, 2021, 178, 109932.	1.5	3
7	Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell. AlP Advances, 2021, 11, 065110.	1.3	2
8	Analyses of time-related performance of betavoltaic batteries using TiT ₂ . Journal Physics D: Applied Physics, 2020, 53, 46LT01.	2.8	1
9	Enhanced performance of GaAs-based betavoltaic batteries by using AlGaAs hole/electron transport layers. Journal Physics D: Applied Physics, 2022, 55, 304002.	2.8	1
10	Optimization design of GaAs-based betavoltaic batteries with p–n junction and Schottky barrier structures. Journal Physics D: Applied Physics, 2022, 55, 194003.	2.8	0