Baolai Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3445426/publications.pdf Version: 2024-02-01

	201674	223800
2,764	27	46
citations	h-index	g-index
142	142	2792
docs citations	times ranked	citing authors
	citations 142	2,764 27 citations h-index 142 142

BAOLALLIANC

#	Article	IF	CITATIONS
1	Temperature Dependence of the Impact Ionization Coefficients in AlAsSb Lattice Matched to InP. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-8.	2.9	11
2	Different optical characteristics between monolayer and bilayer WS2 due to interlayer interaction. Optik, 2022, 251, 168374.	2.9	3
3	Type-II characteristics of photoluminescence from InGaAs/GaAs surface quantum dots due to Fermi level pinning effect. Applied Surface Science, 2022, 578, 152066.	6.1	3
4	Coke and sintering resistant nickel atomically doped with ceria nanosheets for highly efficient solar driven hydrogen production from bioethanol. Green Chemistry, 2022, 24, 2044-2050.	9.0	14
5	General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy. Nature Communications, 2022, 13, 776.	12.8	56
6	Electron radiation effects on carrier relaxation in molecular beam and vapor deposition grown GaAs test structures. Journal of Applied Physics, 2022, 131, 075703.	2.5	1
7	Carrier Injection to In0.4Ga0.6As/GaAs Surface Quantum Dots in Coupled Hybrid Nanostructures. Crystals, 2022, 12, 319.	2.2	2
8	Mechanism of the trivalent lanthanides' persistent luminescence in wide bandgap materials. Light: Science and Applications, 2022, 11, 51.	16.6	52
9	Photoluminescence study of exciton localization in InGaAs bulk and InGaAs/InAlAs wide quantum well on InP (001) substrate. Journal of Luminescence, 2022, 246, 118827.	3.1	2
10	Impact Ionization Coefficients of Digital Alloy and Random Alloy Al _{0.85} Ga _{0.15} As _{0.56} Sb _{0.44} in a Wide Electric Field Range. Journal of Lightwave Technology, 2022, 40, 4758-4764.	4.6	10
11	Monolithic integration of a 10Âμm cut-off wavelength InAs/GaSb type-II superlattice diode on GaAs platform. Scientific Reports, 2022, 12, .	3.3	3
12	Folded MoS2 bilayers with variable interfacial coupling revealed by Raman and Photoluminescence spectroscopy. Optical Materials, 2021, 111, 110641.	3.6	4
13	Solar-heating thermocatalytic H ₂ production from formic acid by a MoS ₂ -graphene-nickel foam composite. Green Chemistry, 2021, 23, 7630-7634.	9.0	7
14	Lateral photovoltaic effect based on novel materials and external modulations. Journal Physics D: Applied Physics, 2021, 54, 153003.	2.8	11
15	Localized state effect and exciton dynamics for monolayer WS ₂ . Optics Express, 2021, 29, 5856.	3.4	9
16	Theoretical Analysis of AlAsâ,€.â,â,†Sbâ,€.â,"â," Single Photon Avalanche Diodes With High Breakdown Probabi IEEE Journal of Quantum Electronics, 2021, 57, 1-6.	lity. 1.9	1
17	Effects of different Cs distribution in the film on the performance of CIGS thin film solar cells. Solar Energy Materials and Solar Cells, 2021, 222, 110917.	6.2	16
18	Optical and structural investigation of a 10 μ m InAs/GaSb type-II superlattice on GaAs. Applied Physics Letters, 2021, 118, 203102.	3.3	1

#	Article	IF	CITATIONS
19	The split-up of G band and 2D band in temperature-dependent Raman spectra of suspended graphene. Optics and Laser Technology, 2021, 139, 106960.	4.6	17
20	Abnormal temperature-dependent photoluminescence characteristics of ReS ₂ nanowalls. Nanotechnology, 2021, 32, 505723.	2.6	1
21	Full-color photon-counting single-pixel imaging. Optics Letters, 2021, 46, 4900.	3.3	13
22	Optical constants of Al0.85Ga0.15As0.56Sb0.44 and Al0.79In0.21As0.74Sb0.26. Applied Physics Letters, 2021, 119, .	3.3	8
23	Tensile-strained self-assembly of InGaAs on InAs(111)A. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, 062809.	1.2	3
24	Complex-amplitude single-pixel imaging using coherent structured illumination. Optics Express, 2021, 29, 41827.	3.4	12
25	Structural Engineering toward High Monochromaticity of Carbon Dots-Based Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 12107-12113.	4.6	8
26	Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots. Journal of Luminescence, 2020, 218, 116870.	3.1	5
27	Self-assembly of tensile-strained Ge quantum dots on InAlAs(111)A. Journal of Crystal Growth, 2020, 533, 125468.	1.5	8
28	Type-II GaSb quantum dots grown on InAlAs/InP (001) by droplet epitaxy. Nanotechnology, 2020, 31, 315701.	2.6	0
29	Electronic excited state energy competition between donor and acceptor in oligo(phenylene vinylene) microcrystal. Optical Materials, 2020, 101, 109714.	3.6	0
30	One-step hydrothermal synthesis of NiCo2S4 loaded on electrospun carbon nanofibers as an efficient counter electrode for dye-sensitized solar cells. Solar Energy, 2020, 202, 358-364.	6.1	27
31	Plasmonic Emission of Bullseye Nanoemitters on Bi2Te3 Nanoflakes. Materials, 2020, 13, 1531.	2.9	4
32	Impact of arsenic species on self-assembly of triangular and hexagonal tensile-strained GaAs(111)A quantum dots. Semiconductor Science and Technology, 2020, 35, 105001.	2.0	2
33	Temperature Dependence of G and D' Phonons in Monolayer to Few-Layer Graphene with Vacancies. Nanoscale Research Letters, 2020, 15, 189.	5.7	9
34	Photoluminescence characterization of wetting layer and carrier dynamics for coupled InGaAs/GaAs surface quantum dot pair structures. Optics Express, 2020, 28, 20704.	3.4	6
35	Optimization of surface passivation for suppressing leakage current in GaSb PIN devices. Electronics Letters, 2020, 56, 1420-1423.	1.0	0
36	Flexibility of Ga-containing Type-II superlattice for long-wavelength infrared detection. Journal Physics D: Applied Physics, 2019, 52, 475102.	2.8	6

#	Article	IF	CITATIONS
37	Significant suppression of surface leakage in GaSb/AlAsSb heterostructure with Al ₂ O ₃ passivation. Japanese Journal of Applied Physics, 2019, 58, 090907.	1.5	3
38	Extremely low excess noise and high sensitivity AlAs0.56Sb0.44 avalanche photodiodes. Nature Photonics, 2019, 13, 683-686.	31.4	62
39	Broad tunability of emission wavelength by strain coupled InAs/GaAs1 â~` xSbx quantum dot heterostructures. Journal of Applied Physics, 2019, 126, 154302.	2.5	5
40	Energy‣ensitive GaSb/AlAsSb Separate Absorption and Multiplication Avalanche Photodiodes for Xâ€Ray and Gammaâ€Ray Detection. Advanced Optical Materials, 2019, 7, 1900107.	7.3	5
41	Comparative study of photoluminescence for type-I InAs/GaAs0.89Sb0.11 and type-II InAs/GaAs0.85Sb0.15 quantum dots. Optical Materials, 2019, 98, 109479.	3.6	4
42	Anomalous Stranski-Krastanov growth of (111)-oriented quantum dots with tunable wetting layer thickness. Scientific Reports, 2019, 9, 18179.	3.3	19
43	A comprehensive set of simulation tools to model and design high-performance Type-II InAs/GaSb superlattice infrared detectors. , 2019, , .		5
44	Piezophototronic Effect Enhanced Photoresponse of the Flexible Cu(In,Ga)Se ₂ (CIGS) Heterojunction Photodetectors. Advanced Functional Materials, 2018, 28, 1707311.	14.9	58
45	A Precursor Stacking Strategy to Boost Open-Circuit Voltage of Cu ₂ ZnSnS ₄ Thin-Film Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 856-863.	2.5	13
46	Exploring time-resolved photoluminescence for nanowires using a three-dimensional computational transient model. Nanoscale, 2018, 10, 7792-7802.	5.6	7
47	A vertically layered MoS ₂ /Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector. Journal of Materials Chemistry C, 2018, 6, 3233-3239.	5.5	132
48	Self-assembly of (111)-oriented tensile-strained quantum dots by molecular beam epitaxy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	1.2	19
49	Ultrahigh, Ultrafast, and Selfâ€Powered Visibleâ€Nearâ€Infrared Optical Positionâ€Sensitive Detector Based on a CVDâ€Prepared Vertically Standing Fewâ€Layer MoS ₂ /Si Heterojunction. Advanced Science, 2018, 5, 1700502.	11.2	87
50	Abnormal photoluminescence for GaAs/Al0.2Ga0.8As quantum dot-ring hybrid nanostructure grown by droplet epitaxy. Journal of Luminescence, 2018, 195, 187-192.	3.1	8
51	The transverse thermoelectric effect in <i>a</i> -axis inclined oriented SnSe thin films. Journal of Materials Chemistry C, 2018, 6, 12858-12863.	5.5	14
52	Synthesis of mesoporous Fe ₃ Si aerogel as a photo-thermal material for highly efficient and stable corrosive-water evaporation. Journal of Materials Chemistry A, 2018, 6, 23263-23269.	10.3	23
53	Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots. Nanoscale Research Letters, 2018, 13, 387.	5.7	17
54	A three-dimensional insight into correlation between carrier lifetime and surface recombination velocity for nanowires. Nanotechnology, 2018, 29, 504003.	2.6	5

#	Article	IF	CITATIONS
55	Carrier dynamics in hybrid nanostructure with electronic coupling from an InGaAs quantum well to InAs quantum dots. Journal of Luminescence, 2018, 202, 20-26.	3.1	10
56	Demonstration of large ionization coefficient ratio in AlAs0.56Sb0.44 lattice matched to InP. Scientific Reports, 2018, 8, 9107.	3.3	22
57	Temperature Dependence of Raman-Active In-Plane E2g Phonons in Layered Graphene and h-BN Flakes. Nanoscale Research Letters, 2018, 13, 25.	5.7	12
58	Correlation between photoluminescence and morphology for single layer self-assembled InGaAs/GaAs quantum dots. Optics Express, 2018, 26, 23107.	3.4	10
59	Layer-number dependent reflection spectra of MoS ₂ flakes on SiO ₂ /Si substrate. Optical Materials Express, 2018, 8, 3082.	3.0	14
60	Optical image processing by using a photorefractive spatial soliton waveguide. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1207-1212.	2.1	3
61	Review Article: Molecular beam epitaxy of lattice-matched InAlAs and InGaAs layers on InP (111)A, (111)B, and (110). Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	1.2	41
62	Photoluminescence Study of the Interface Fluctuation Effect for InGaAs/InAlAs/InP Single Quantum Well with Different Thickness. Nanoscale Research Letters, 2017, 12, 229.	5.7	22
63	Optical characterization of type-I to type-II band alignment transition in GaAs/Al _{<i>x</i>} Ga _{1â^'<i>x</i>} As quantum rings grown by droplet epitaxy. Journal Physics D: Applied Physics, 2017, 50, 32LT01.	2.8	6
64	CdS/Sb ₂ S ₃ heterojunction thin film solar cells with a thermally evaporated absorber. Journal of Materials Chemistry C, 2017, 5, 9421-9428.	5.5	68
65	Optical properties of bimodally distributed InAs quantum dots grown on digital AlAs0.56Sb0.44matrix for use in intermediate band solar cells. Journal of Applied Physics, 2017, 121, 214304.	2.5	5
66	Carrier dynamics of InAs quantum dots with GaAs1â^'xSbx barrier layers. Applied Physics Letters, 2017, 111, .	3.3	5
67	Lateral photovoltaic effect observed in doping-modulated GaAs/Al_03Ga_07As. Optics Express, 2017, 25, A166.	3.4	25
68	Absorption dynamics of type-II GaSb/GaAs quantum dots. Optical Materials Express, 2017, 7, 1424.	3.0	9
69	Optical Characterization of AlAsSb Digital Alloy and Random Alloy on GaSb. Crystals, 2017, 7, 313.	2.2	5
70	PL of lowâ€density InAs/GaAs quantum dots with different bimodal populations. Micro and Nano Letters, 2017, 12, 599-604.	1.3	3
71	Interplay Effect of Excitation and Temperature on Carrier Transfer between Vertically Aligned InAs/GaAs Quantum Dot Pairs. Crystals, 2016, 6, 144.	2.2	4
72	High-density InAs/GaAs1â^² <i>x</i> Sb <i>x</i> quantum-dot structures grown by molecular beam epitaxy for use in intermediate band solar cells. Journal of Applied Physics, 2016, 119, .	2.5	9

Baolai Liang

#	Article	IF	CITATIONS
73	The continuum state in photoluminescence of type-II In0.46Al0.54As/Al0.54Ga0.46As quantum dots. Applied Physics Letters, 2016, 109, 183103.	3.3	5
74	Comparative study of photoluminescence from In _{0.3} Ga _{0.7} As/GaAs surface and buried quantum dots. Nanotechnology, 2016, 27, 465701.	2.6	17
75	Characterization of GaSb photodiode for gamma-ray detection. Applied Physics Express, 2016, 9, 086401.	2.4	4
76	Coexistence of type-I and type-II band alignments in In0.46Al0.54As/Ga0.46Al0.54As self-assembled quantum dots. Applied Physics Letters, 2015, 107, 183107.	3.3	3
77	Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence. Applied Physics Letters, 2015, 106, .	3.3	18
78	Photoluminescence study of the effect of strain compensation on InAs/AlAsSb quantum dots. Journal of Crystal Growth, 2015, 425, 312-315.	1.5	3
79	GaSb thermophotovoltaic cells grown on GaAs by molecular beam epitaxy using interfacial misfit arrays. Applied Physics Letters, 2015, 106, .	3.3	41
80	Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer. Nanoscale Research Letters, 2015, 10, 973.	5.7	13
81	Improved quantum dot stacking for intermediate band solar cells using strain compensation. Nanotechnology, 2014, 25, 445402.	2.6	17
82	Investigation of optical transitions in InAs/GaAs(Sb)/AlAsSb quantum dots using modulation spectroscopy. Applied Physics Letters, 2014, 105, 253903.	3.3	6
83	Strain-driven growth of GaAs(111) quantum dots with low fine structure splitting. Applied Physics Letters, 2014, 105, .	3.3	33
84	Origin of nanohole formation by etching based on droplet epitaxy. Nanoscale, 2014, 6, 2675.	5.6	37
85	Tensile GaAs(111) quantum dashes with tunable luminescence below the bulk bandgap. Applied Physics Letters, 2014, 105, .	3.3	12
86	Site-controlled formation of InGaAs quantum nanostructures-Tailoring the dimensionality and the quantum confinement. Nano Research, 2013, 6, 235-242.	10.4	14
87	Electro-optic properties of GaInAsSb/GaAs quantum well for high-speed integrated optoelectronic devices. Applied Physics Letters, 2013, 102, 013120.	3.3	8
88	Tuning Quantum Dot Luminescence Below the Bulk Band Gap Using Tensile Strain. ACS Nano, 2013, 7, 5017-5023.	14.6	34
89	Anisotropic electro-optic effect on InGaAs quantum dot chain modulators. Optics Letters, 2013, 38, 4262.	3.3	5
90	Carrier localization and <i>in-situ</i> annealing effect on quaternary Ga1â^'xInxAsySb1â^'y/GaAs quantum wells grown by Sb pre-deposition. Applied Physics Letters, 2013, 102, .	3.3	7

#	Article	IF	CITATIONS
91	Electro-optical and lasing properties of hybrid quantum dot/quantum well material system for reconfigurable photonic devices. Applied Physics Letters, 2013, 102, 053110.	3.3	6
92	Effects of GaAs(Sb) cladding layers on InAs/AlAsSb quantum dots. Applied Physics Letters, 2013, 102, .	3.3	12
93	Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers. Applied Physics Letters, 2012, 100, .	3.3	28
94	Extracting transport parameters in GaAs nanopillars grown by selective-area epitaxy. Nanotechnology, 2012, 23, 105701.	2.6	18
95	Composite axial/core-shell nanopillar light-emitting diodes at 1.3 <i>μ</i> m. Applied Physics Letters, 2012, 101, 053111.	3.3	13
96	Coexistence of type-I and type-II band alignments in antimony-incorporated InAsSb quantum dot nanostructures. Applied Physics Letters, 2012, 100, .	3.3	30
97	High-Speed InAs Quantum-Dot Electrooptic Phase Modulators. IEEE Photonics Technology Letters, 2011, 23, 1748-1750.	2.5	3
98	Surface Plasmon-Enhanced Nanopillar Photodetectors. Nano Letters, 2011, 11, 5279-5283.	9.1	108
99	Bottom-up Photonic Crystal Lasers. Nano Letters, 2011, 11, 5387-5390.	9.1	112
100	Self-catalyzed vapor–liquid–solid growth of InP/InAsP core–shell nanopillars. Journal of Crystal Growth, 2011, 314, 34-38.	1.5	3
101	Characterization of GaSb/GaAs interfacial misfit arrays using x-ray diffraction. Applied Physics Letters, 2011, 99, .	3.3	33
102	InAs Quantum Dots on Nanopatterned GaAs (001) Surface: The Growth, Optical Properties, and Device Implementation. Journal of Nanoscience and Nanotechnology, 2010, 10, 1537-1550.	0.9	8
103	Band Alignment Tailoring of InAs _{1â^'<i>x</i>} Sb _{<i>x</i>} /GaAs Quantum Dots: Control of Type I to Type II Transition. Nano Letters, 2010, 10, 3052-3056.	9.1	31
104	Coulomb effect inhibiting spontaneous emission in charged quantum dot. Applied Physics Letters, 2010, 97, .	3.3	5
105	1.52â€,μm photoluminescence emissions from InAs quantum dots grown on nanopatterned GaAs buffers. Applied Physics Letters, 2010, 97, 143111.	3.3	4
106	Controlled Formation and Dynamic Wulff Simulation of Equilibrium Crystal Shapes of GaAs Pyramidal Structures on Nanopatterned Substrates. Crystal Growth and Design, 2010, 10, 2509-2514.	3.0	8
107	Photoconductive gain in patterned nanopillar photodetector arrays. Applied Physics Letters, 2010, 97, .	3.3	21
108	InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy. Applied Physics Letters, 2010, 97, .	3.3	59

#	Article	IF	CITATIONS
109	GaSb/GaAs type-II quantum dots grown by droplet epitaxy. Nanotechnology, 2009, 20, 455604.	2.6	39
110	Structural Analysis of Highly Relaxed GaSb Grown on GaAs Substrates with Periodic Interfacial Array of 90° Misfit Dislocations. Nanoscale Research Letters, 2009, 4, 1458-62.	5.7	50
111	Self-Catalyzed Epitaxial Growth of Vertical Indium Phosphide Nanowires on Silicon. Nano Letters, 2009, 9, 2223-2228.	9.1	70
112	InAs Quantum Dot Clusters Grown on GaAs Droplet Templates: Surface Morphologies and Optical Properties. Journal of Nanoscience and Nanotechnology, 2009, 9, 3320-3324.	0.9	2
113	Time-resolved photoluminescence of type-II Ga(As)Sb/GaAs quantum dots embedded in an InGaAs quantum well. Nanotechnology, 2008, 19, 295704.	2.6	24
114	Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure. Nanotechnology, 2008, 19, 435710.	2.6	16
115	Spectroscopic observation of developing InAs quantum dots on GaAs ringlike-nanostructured templates. Journal of Applied Physics, 2008, 104, 044310.	2.5	5
116	Near-field optical spectroscopy ofGaAsâ^•AlyGa1â^'yAsquantum dot pairs grown by high-temperature droplet epitaxy. Physical Review B, 2008, 77, .	3.2	17
117	Development of continuum states in photoluminescence of self-assembled InGaAsâ^•GaAs quantum dots. Journal of Applied Physics, 2007, 101, 014301.	2.5	34
118	Optical properties of patterned InAs quantum dot ensembles grown on GaAs nanopyramids. Applied Physics Letters, 2007, 91, .	3.3	19
119	Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100). Applied Physics Letters, 2007, 90, 113120.	3.3	209
120	Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures. Optics Express, 2007, 15, 8157.	3.4	16
121	Formation of Self-Assembled Sidewall Nanowires on Shallow Patterned GaAs (100). IEEE Nanotechnology Magazine, 2007, 6, 70-74.	2.0	7
122	Self-Organization of InAs Quantum-Dot Clusters Directed by Droplet Homoepitaxy. Small, 2007, 3, 235-238.	10.0	45
123	Influence of GaAs Substrate Orientation on InAs Quantum Dots: Surface Morphology, Critical Thickness, and Optical Properties. Nanoscale Research Letters, 2007, 2, .	5.7	21
124	Beam fanning effect and image storage in Ce: KNSBN crystal. Science Bulletin, 2007, 52, 1024-1028.	1.7	0
125	Low density InAs quantum dots grown on GaAs nanoholes. Applied Physics Letters, 2006, 89, 043113.	3.3	68
126	Lengthening of the photoluminescence decay time of InAs quantum dots coupled to InGaAsâ^•GaAs quantum well. Journal of Applied Physics, 2006, 100, 054313.	2.5	17

#	Article	IF	CITATIONS
127	Excitonic transfer in coupled InGaAsâ^•GaAs quantum well to InAs quantum dots. Applied Physics Letters, 2006, 89, 151914.	3.3	24
128	Direct Spectroscopic Evidence for the Formation of One-Dimensional Wetting Wires During the Growth of InGaAs/GaAs Quantum Dot Chains. Nano Letters, 2006, 6, 1847-1851.	9.1	30
129	Growth and characterization of bilayer InAs/GaAs quantum dot structures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2403-2410.	1.8	5
130	InGaAs quantum dots grown on B-type high index GaAs substrates: surface morphologies and optical properties. Nanotechnology, 2006, 17, 2736-2740.	2.6	22
131	Selective growth of InGaAs/GaAs quantum dot chains on pre-patterned GaAs(100). Nanotechnology, 2006, 17, 2275-2278.	2.6	24
132	Size and density control of InAs quantum dot ensembles on self-assembled nanostructured templates. Semiconductor Science and Technology, 2006, 21, 1547-1551.	2.0	24
133	Annealing effect on GaAs droplet templates in formation of self-assembled InAs quantum dots. Applied Physics Letters, 2006, 89, 213103.	3.3	9
134	Correlation between surface and buried InAs quantum dots. Applied Physics Letters, 2006, 89, 043125.	3.3	22
135	Localized formation of InAs quantum dots on shallow-patterned GaAs(100). Applied Physics Letters, 2006, 88, 233102.	3.3	40
136	Photoluminescence of surface InAs quantum dot stacking on multilayer buried quantum dots. Applied Physics Letters, 2006, 89, 243124.	3.3	20
137	Improvement of holographic recording property of a Ce: KNSBN crystal by the moving grating technique. Optik, 2003, 113, 531-534.	2.9	0
138	Optical switching property of a Ce:KNSBN photorefractive volume grating controlled by the readout beam polarization. Optics Communications, 2003, 217, 111-115.	2.1	2
139	Fidelity holographic recording in a Ce: KNSBN crystal with incoherent erasing technique. Optik, 2003, 114, 515-517.	2.9	0
140	Four-wave mixing and edge-enhanced optical correlation in a Ce:KNSBN crystal. Optics Letters, 2000, 25, 1086.	3.3	10
141	The photorefractive soliton as an electro-optic modulator. , 0, , .		0