Bernhard G Herrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3445370/publications.pdf Version: 2024-02-01

		257450	315739
40	4,844	24	38
papers	4,844 citations	h-index	g-index
41	41	41	5761
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanisms of long noncoding RNA function in development and disease. Cellular and Molecular Life Sciences, 2016, 73, 2491-2509.	5.4	831
2	Cloning of the T gene required in mesoderm formation in the mouse. Nature, 1990, 343, 617-622.	27.8	818
3	Expression pattern of the mouse T gene and its role in mesoderm formation. Nature, 1990, 343, 657-659.	27.8	799
4	Brachyury is a target gene of the Wnt/β-catenin signaling pathway. Mechanisms of Development, 2000, 91, 249-258.	1.7	269
5	Segmentation in vertebrates: clock and gradient finally joined. Genes and Development, 2004, 18, 2060-2067.	5.9	194
6	Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science, 2020, 370, .	12.6	193
7	A protein kinase encoded by the t complex responder gene causes non-mendelian inheritance. Nature, 1999, 402, 141-146.	27.8	166
8	The long non-coding RNA <i><i>Fendrr</i></i> links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biology, 2013, 10, 1579-1585.	3.1	158
9	WNT signaling, in synergy with T/TBX6, controls Notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos. Genes and Development, 2004, 18, 2712-2717.	5.9	153
10	Antagonistic Activities of Sox2 and Brachyury Control the Fate Choice of Neuro-Mesodermal Progenitors. Developmental Cell, 2017, 42, 514-526.e7.	7.0	139
11	Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney International, 2014, 85, 1310-1317.	5.2	106
12	Expression of <i>Msgn1</i> in the presomitic mesoderm is controlled by synergism of WNT signalling and <i>Tbx6</i> . EMBO Reports, 2007, 8, 784-789.	4.5	88
13	The t complex–encoded GTPase-activating protein Tagap1 acts as a transmission ratio distorter in mice. Nature Genetics, 2005, 37, 969-973.	21.4	80
14	Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nature Communications, 2014, 5, 4675.	12.8	76
15	Distinct regulatory control of the Brachyury gene in axial and non-axial mesoderm suggests separation of mesoderm lineages early in mouse gastrulation. Mechanisms of Development, 1996, 56, 139-149.	1.7	72
16	Cell type-dependent differential activation of ERK by oncogenic KRAS in colon cancer and intestinal epithelium. Nature Communications, 2019, 10, 2919.	12.8	70
17	The t-complex-encoded guanine nucleotide exchange factor Fgd2 reveals that two opposing signaling pathways promote transmission ratio distortion in the mouse. Genes and Development, 2007, 21, 143-147.	5.9	69
18	Long noncoding RNAs in organogenesis: making the difference. Trends in Genetics, 2015, 31, 329-335.	6.7	68

Bernhard G Herrmann

#	Article	IF	CITATIONS
19	In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Developmental Biology, 2012, 372, 55-67.	2.0	48
20	Retention of gene products in syncytial spermatids promotes non-Mendelian inheritance as revealed by the <i>t complex responder</i> . Genes and Development, 2009, 23, 2705-2710.	5.9	46
21	Upk3b Is Dispensable for Development and Integrity of Urothelium and Mesothelium. PLoS ONE, 2014, 9, e112112.	2.5	42
22	Genome-wide Association Study and Meta-Analysis Identify ISL1 as Genome-wide Significant Susceptibility Gene for Bladder Exstrophy. PLoS Genetics, 2015, 11, e1005024.	3.5	41
23	The Nucleoside Diphosphate Kinase Gene Nme3 Acts as Quantitative Trait Locus Promoting Non-Mendelian Inheritance. PLoS Genetics, 2012, 8, e1002567.	3.5	38
24	Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. Journal of Cell Biology, 2017, 216, 1567-1577.	5.2	29
25	An inducible RNA interference system for the functional dissection of mouse embryogenesis. Nucleic Acids Research, 2010, 38, e122-e122.	14.5	25
26	Different Concentrations of FGF Ligands, FGF2 or FGF8 Determine Distinct States of WNT-Induced Presomitic Mesoderm. Stem Cells, 2016, 34, 1790-1800.	3.2	23
27	BRACHYURY directs histone acetylation to target loci during mesoderm development. EMBO Reports, 2018, 19, 118-134.	4.5	23
28	The mouse <i>t</i> -haplotype:. , 2012, , 297-314.		22
29	Wnt and BMP signals control intestinal adenoma cell fates. International Journal of Cancer, 2012, 131, 2242-2252.	5.1	21
30	Genome-wide association study and mouse expression data identify a highly conserved 32 kb intergenic region between WNT3 and WNT9b as possible susceptibility locus for isolated classic exstrophy of the bladder. Human Molecular Genetics, 2014, 23, 5536-5544.	2.9	19
31	Modeling mammalian trunk development in a dish. Developmental Biology, 2021, 474, 5-15.	2.0	18
32	Two isoforms of the RAC-specific guanine nucleotide exchange factor TIAM2 act oppositely on transmission ratio distortion by the mouse t-haplotype. PLoS Genetics, 2019, 15, e1007964.	3.5	17
33	SRF is essential for mesodermal cell migration during elongation of the embryonic body axis. Mechanisms of Development, 2014, 133, 23-35.	1.7	14
34	Patterning and gastrulation defects caused by the <i>tw18</i> lethal are due to loss of <i>Ppp2r1a</i> . Biology Open, 2017, 6, 752-764.	1.2	14
35	Analysis of the Fam181 gene family during mouse development reveals distinct strain-specific expression patterns, suggesting a role in nervous system development and function. Gene, 2016, 575, 438-451.	2.2	13
36	RAC1 controls progressive movement and competitiveness of mammalian spermatozoa. PLoS Genetics, 2021, 17, e1009308.	3.5	9

#	Article	IF	CITATIONS
37	A 37â€kb region upstream of <i>brachyury</i> comprising a notochord enhancer is essential for notochord and tail development. Development (Cambridge), 2021, 148, .	2.5	9
38	An Image-Based Genetic Assay Identifies Genes in T1D Susceptibility Loci Controlling Cellular Antiviral Immunity in Mouse. PLoS ONE, 2014, 9, e108777.	2.5	6
39	Generation of Mouse Pluripotent Stem Cell-derived Trunk-like Structures: An in vitro Model of Post-implantation Embryogenesis. Bio-protocol, 2021, 11, e4042.	0.4	3
40	PWD/Ph-Encoded Genetic Variants Modulate the Cellular Wnt/β-Catenin Response to Suppress <i>Apc</i> Min-Triggered Intestinal Tumor Formation. Cancer Research, 2021, 81, 38-49.	0.9	0