
Raffaela Biesuz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3445217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: A review. Analytica Chimica Acta, 2009, 631, 129-141.	2.6	186
2	Beyond the synthesis of novel solid phases: Review on modelling of sorption phenomena. Coordination Chemistry Reviews, 2012, 256, 28-45.	9.5	185
3	Sorption mechanism of trace amounts of divalent metal ions on a chelating resin containing iminodiacetate groups. Analytical Chemistry, 1993, 65, 2522-2527.	3.2	118
4	A Simple Small Size and Low Cost Sensor Based on Surface Plasmon Resonance for Selective Detection of Fe(III). Sensors, 2014, 14, 4657-4671.	2.1	51
5	Gold and Silver Nanoparticle-Based Colorimetric Sensors: New Trends and Applications. Chemosensors, 2021, 9, 305.	1.8	49
6	Sorption of metal ions on a weak acid cation-exchange resin containing carboxylic groups. Analytica Chimica Acta, 1994, 298, 225-232.	2.6	47
7	Disposable and Low-Cost Colorimetric Sensors for Environmental Analysis. International Journal of Environmental Research and Public Health, 2020, 17, 8331.	1.2	47
8	Chromium Release from New Stainless Steel, Recycled and Nickel-free Orthodontic Brackets. Angle Orthodontist, 2009, 79, 361-367.	1.1	46
9	Colorimetric Sensor Array for Monitoring, Modelling and Comparing Spoilage Processes of Different Meat and Fish Foods. Foods, 2020, 9, 684.	1.9	44
10	Nickel release from new conventional stainless steel, recycled, and nickel-free orthodontic brackets: An in vitro study. American Journal of Orthodontics and Dentofacial Orthopedics, 2010, 137, 809-815.	0.8	43
11	Simultaneous Determination of Total and Free Metal Ion Concentration in Solution by Sorption on Iminodiacetate Resin. Analytical Chemistry, 1995, 67, 3558-3563.	3.2	41
12	Characterization and applications of chelating resins as chemical reagents for metal ions, based on the Gibbs-Donnan model. Reactive and Functional Polymers, 1998, 36, 135-147.	2.0	38
13	A Speciation Study on the Perturbing Effects of Iron Chelators on the Homeostasis of Essential Metal Ions. PLoS ONE, 2015, 10, e0133050.	1.1	37
14	Current Trends in Polymer Based Sensors. Chemosensors, 2021, 9, 108.	1.8	37
15	Cavity Effect on Perrhenate Recognition by Polyammonium Cages. European Journal of Inorganic Chemistry, 2012, 2012, 3410-3417.	1.0	35
16	Biomass against emerging pollution in wastewater: Ability of cork for the removal of ofloxacin from aqueous solutions at different pH. Journal of Environmental Chemical Engineering, 2013, 1, 1199-1204.	3.3	35
17	Sorption of divalent metal ions on an iminodiacetic resin from artificial seawater. Analytica Chimica Acta, 1997, 346, 381-391.	2.6	34
18	Determination of the total concentration and speciation of Al(III) in tea infusions. Journal of Inorganic Biochemistry, 2003, 97, 79-88.	1.5	32

#	Article	IF	CITATIONS
19	Determination of metal ions concentration and speciation in seawater by titration with an iminodiacetic resin. Analytica Chimica Acta, 1999, 401, 265-276.	2.6	31
20	A comparison between the determination of free Pb(II) by two techniques: Absence of gradients and Nernstian equilibrium stripping and resin titration. Analytica Chimica Acta, 2007, 599, 41-50.	2.6	30
21	Sorption of chrysoidine by row cork and cork entrapped in calcium alginate beads. Arabian Journal of Chemistry, 2014, 7, 133-138.	2.3	28
22	Characterization of the sorption of uranium(VI) on different complexing resins. Analytical and Bioanalytical Chemistry, 2003, 376, 1023-1029.	1.9	27
23	Molecularly Imprinted Polymerâ€Based Sensors for Amperometric Determination of Nonelectroactive Substances. Electroanalysis, 2009, 21, 604-611.	1.5	27
24	Study of aluminium speciation in freshwaters by sorption on a chelating resin. Analyst, The, 1998, 123, 1295-1301.	1.7	26
25	Deferoxamine–paper for iron(III) and vanadium(V) sensing. Chemical Papers, 2015, 69, .	1.0	26
26	Determination of cadmium(II), copper(II), manganese(II) and nickel(II) species in Antarctic seawater with complexing resins. Marine Chemistry, 2006, 101, 180-189.	0.9	25
27	Novel DFO-functionalized mesoporous silica for iron sensing. Part 2. Experimental detection of free iron concentration (pFe) in urine samples. Analyst, The, 2014, 139, 3940-3948.	1.7	22
28	Naked-Eye Food Freshness Detection: Innovative Polymeric Optode for High-Protein Food Spoilage Monitoring. ACS Food Science & Technology, 2021, 1, 165-175.	1.3	22
29	Chelating Agents in Soil Remediation: A New Method for a Pragmatic Choice of the Right Chelator. Frontiers in Chemistry, 2020, 8, 597400.	1.8	21
30	Investigation of the metal species in seawater by sorption of the metal ion on complexing resins with different sorbing properties. Analytica Chimica Acta, 2001, 449, 23-33.	2.6	20
31	Novel DFO-SAM on mesoporous silica for iron sensing. Part I. Synthesis optimization and characterization of the material. Analyst, The, 2014, 139, 3932.	1.7	20
32	Low-cost, disposable colourimetric sensors for metal ions detection. Journal of Analytical Science and Technology, 2020, 11, .	1.0	20
33	Sorption of copper, nickel and lanthanum on a strong-base anion exchanger containing Chromotrope 2B. Reactive & Functional Polymers, 1991, 14, 239-250.	0.8	18
34	Investigation of the speciation of aluminium in drinking waters by sorption on a strong anionic-exchange resin AG1X8. Analytica Chimica Acta, 1998, 367, 215-222.	2.6	18
35	Investigation on sorption equilibria of Mn(II), Cu(II) and Cd(II) on a carboxylic resin by the Gibbs–Donnan model. Talanta, 2001, 55, 541-550.	2.9	18
36	Estimation of Deprotonation Coefficients for Chelating Ion Exchange Resins. Comparison of Different Thermodynamic Model. Journal of Physical Chemistry B, 2001, 105, 4721-4726.	1.2	18

#	Article	IF	CITATIONS
37	Development of a Dye-Based Device to Assess the Poultry Meat Spoilage. Part II: Array on Act. Journal of Agricultural and Food Chemistry, 2020, 68, 12710-12718.	2.4	18
38	Towards intelligent packaging: BCP-EVOH@ optode for milk freshness measurement. Talanta, 2022, 241, 123230.	2.9	18
39	Separation of copper(II) and aluminium(III) from fresh waters by solid phase extraction on a complexing resin column. Journal of Separation Science, 2003, 26, 381-386.	1.3	17
40	Supramolecular receptors in solid phase: developing sensors for anionic radionuclides. Dalton Transactions, 2013, 42, 6227.	1.6	17
41	Geopolymers from low-T activated kaolin: Implications for the use of alunite-bearing raw materials. Applied Clay Science, 2015, 114, 530-539.	2.6	17
42	Colorimetric detection, quantification and extraction of Fe(III) in water by acrylic polymers with pendant Kojic acid motifs. Sensors and Actuators B: Chemical, 2016, 233, 120-126.	4.0	17
43	A portable, disposable, and low-cost optode for sulphide and thiol detection. Analytical Methods, 2019, 11, 4464-4470.	1.3	17
44	Evaluation of the sorption of metal ions on a complexing resin from different solutions based on the Gibbs–Donnan model. Reactive and Functional Polymers, 2001, 46, 233-246.	2.0	16
45	Sorption of Lead(II) on Two Chelating Resins: FromÂtheÂExchange Coefficient to the Intrinsic Complexation Constant. Journal of Solution Chemistry, 2008, 37, 527-541.	0.6	16
46	Development of a Dye-Based Device to Assess Poultry Meat Spoilage. Part I: Building and Testing the Sensitive Array. Journal of Agricultural and Food Chemistry, 2020, 68, 12702-12709.	2.4	16
47	Investigation of the complexation properties of a natural water towards copper(II), manganese(II) and aluminium(III), based on sorption of metal ions on a complexing resin. Polyhedron, 2002, 21, 1343-1350.	1.0	15
48	A chelating resin as a probe for the copper(II) distribution in grape wines. Reactive and Functional Polymers, 2007, 67, 1083-1093.	2.0	15
49	Adsorption of the Prototype Anionic Anthraquinone, Acid Blue 25, on a Modified Banana Peel: Comparison with Equilibrium and Kinetic Ligand–Receptor Biochemical Data. Industrial & Engineering Chemistry Research, 2014, 53, 2251-2260.	1.8	15
50	Smart sensory materials for divalent cations: a dithizone immobilized membrane for optical analysis. Analyst, The, 2016, 141, 6140-6148.	1.7	14
51	IronIII and aluminiumIII complexes with substituted salicyl-aldehydes and salicylic acids. Journal of Inorganic Biochemistry, 2013, 128, 174-182.	1.5	12
52	Inexpensive Alizarin Red S-based optical device for the simultaneous detection of Fe(III) and Al(III). Microchemical Journal, 2019, 149, 104036.	2.3	12
53	Optimum extraction process of polyphenols from Bridelia grandis stem bark using experimental design. Journal of Separation Science, 2010, 33, 1692-1697.	1.3	11
54	DFO@EVOH and 3,4-HP@EVOH: Towards New Polymeric Sorbents for Iron(III). Chemosensors, 2020, 8, 111.	1.8	11

#	Article	IF	CITATIONS
55	Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins. Journal of Chromatography A, 2010, 1217, 1208-1218.	1.8	10
56	Emporeâ,,¢ membrane vs. Chelex 100: Thermodynamic and kinetic studies on metals sorption. Reactive and Functional Polymers, 2011, 71, 588-598.	2.0	10
57	Experimental design applied to the optimization of microwave-assisted DNA hydrolysis. Journal of Chromatography A, 2012, 1249, 8-16.	1.8	10
58	Simple solid-phase spectrophotometric method for free iron(III) determination. Arabian Journal of Chemistry, 2019, 12, 573-579.	2.3	10
59	EVOH-Based pH-Sensitive Optode Array and Chemometrics: From Naked-Eye Analysis to Predictive Modeling to Detect Milk Freshness. ACS Food Science & Technology, 2021, 1, 819-828.	1.3	10
60	Speciation of copper(II) in natural waters in the presence of ligands of high and intermediate strength. Chemical Speciation and Bioavailability, 2004, 16, 35-43.	2.0	8
61	Usage of Emporeâ,,¢ membrane in alcoholic media for copper(II) distribution studies. Talanta, 2009, 79, 603-612.	2.9	8
62	Development of a sensor for trivalent iron: AHP fixed on mesoporous silica. New Journal of Chemistry, 2018, 42, 15237-15244.	1.4	8
63	Strong copper(II) species in estuarine and sea waters investigated by a method with high detection window. Talanta, 2007, 71, 706-714.	2.9	7
64	Screen-Printed Gold Electrode Functionalized with Deferoxamine for Iron(III) Detection. Chemosensors, 2022, 10, 214.	1.8	7
65	Spectrophotometric determination of palladium(II) with four water-soluble heterocyclic azo dyes. Analyst, The, 1985, 110, 801.	1.7	6
66	Determination of the Total Concentration and Speciation of Metal lons in River, Estuarine and Seawater Samples. Analytical Sciences, 2008, 24, 1605-1611.	0.8	6
67	Investigation of the complexation of metal-ions by strong ligands in fresh and marine water. Environmental Science and Pollution Research, 2003, 10, 317-320.	2.7	5
68	Ion Exchange Complexing Resins as Sensors for the Determination of Free Metal Ion Concentration at a Low Level. Solvent Extraction and Ion Exchange, 2008, 26, 301-320.	0.8	5
69	Pb(II), Cu(II) and Cd(II) Removal through Untreated Rice Husk; Thermodynamics and Kinetics. Analytical Sciences, 2012, 28, 993-999.	0.8	5
70	Unusual PLS application for Pd(<scp>ii</scp>) sensing in extremely acidic solutions. New Journal of Chemistry, 2018, 42, 7901-7907.	1.4	5
71	Exchange of protons between some poly(amido-amine) resins and aqueous solutions: A thermodynamic interpretation. Reactive & Functional Polymers, 1989, 11, 37-45.	0.8	4
72	Salicylamide derivatives for iron and aluminium sequestration. From synthesis to complexation studies. Journal of Trace Elements in Medicine and Biology, 2018, 50, 580-588.	1.5	4

#	Article	IF	CITATIONS
73	Role of Biogenic Amines in Protein Foods Sensing: Myths and Evidence. , 0, , .		4
74	Metal complexation capacity of Antarctic lacustrine sediments. Chemosphere, 2018, 196, 402-408.	4.2	3
75	Determination of dissolved inorganic species of iodine by spectrophotometric titration. Analyst, The, 1987, 112, 1265.	1.7	2
76	Freshness <i>Traffic Light</i> for Fish Products: Dual-Optode Label to Monitor Fish Spoilage in Sales Packages. ACS Food Science & Technology, 0, , .	1.3	2
77	pH-Sensitive Sensors at Work on Poultry Meat Degradation Detection: From the Laboratory to the Supermarket Shelf. AppliedChem, 2022, 2, 128-141.	0.2	2
78	Photometric titration of total iodine at trace levels in concetrated chloride solutions. Analytica Chimica Acta, 1984, 158, 143-146.	2.6	1
79	Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles. Chemical Papers, 2014, 68, .	1.0	1
80	Sensing of Copper(II) by Immobilized Ligands: Comparison of Electrochemical and Surface Plasmon Resonance Transduction. Proceedings (mdpi), 2019, 15, .	0.2	1
81	Potentiometric Sensors Based on Molecular Imprinted Polymers. Lecture Notes in Electrical Engineering, 2014, , 141-144.	0.3	Ο