Chris Greenwell

List of Publications by Citations

Source: https://exaly.com/author-pdf/344479/chris-greenwell-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 3,811 60 32 h-index g-index citations papers 6.9 4,212 90 5.45 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
88	Placing microalgae on the biofuels priority list: a review of the technological challenges. <i>Journal of the Royal Society Interface</i> , 2010 , 7, 703-26	4.1	590
87	Clay swelling [A challenge in the oilfield. <i>Earth-Science Reviews</i> , 2010 , 98, 201-216	10.2	379
86	A critical appraisal of polymer-clay nanocomposites. <i>Chemical Society Reviews</i> , 2008 , 37, 568-94	58.5	324
85	Large-Scale Molecular Dynamics Study of Montmorillonite Clay: Emergence of Undulatory Fluctuations and Determination of Material Properties. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8248	3- 82 59	122
84	On the application of computer simulation techniques to anionic and cationic clays: A materials chemistry perspective. <i>Journal of Materials Chemistry</i> , 2006 , 16, 708-723		119
83	Catalytic upgrading of tri-glycerides and fatty acids to transport biofuels. <i>Energy and Environmental Science</i> , 2009 , 2, 262-271	35.4	109
82	Computer simulation study of the structural stability and materials properties of DNA-intercalated layered double hydroxides. <i>Journal of the American Chemical Society</i> , 2008 , 130, 4742-56	16.4	109
81	Molecular Dynamic Simulations of Montmorillonite Drganic Interactions under Varying Salinity: An Insight into Enhanced Oil Recovery. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 7282-7294	3.8	82
80	Rule based design of clay-swelling inhibitors. <i>Energy and Environmental Science</i> , 2011 , 4, 4572	35.4	80
79	Preparation of zinc oxide free, transparent rubber nanocomposites using a layered double hydroxide filler. <i>Journal of Materials Chemistry</i> , 2011 , 21, 7194		79
78	Recent advances in understanding the structure and reactivity of clays using electronic structure calculations. <i>Computational and Theoretical Chemistry</i> , 2006 , 762, 33-48		70
77	Towards a mechanistic understanding of carbon stabilization in manganese oxides. <i>Nature Communications</i> , 2015 , 6, 7628	17.4	69
76	Thermochemical processing of macroalgae: a late bloomer in the development of third-generation biofuels?. <i>Biofuels</i> , 2012 , 3, 441-461	2	68
75	Recent advances in large-scale atomistic and coarse-grained molecular dynamics simulation of clay minerals. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2482		68
74	Interlayer Structure and Bonding in Nonswelling Primary Amine Intercalated Clays. <i>Macromolecules</i> , 2005 , 38, 6189-6200	5.5	66
73	Studies of the effects of synthetic procedure on base catalysis using hydroxide-intercalated layer double hydroxides. <i>Catalysis Today</i> , 2006 , 114, 397-402	5.3	60
72	A Density Functional Theory Study of Catalytic trans-Esterification by tert-Butoxide MgAl Anionic Clays. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 3476-3485	3.4	59

71	Mineral surface chemistry control for origin of prebiotic peptides. <i>Nature Communications</i> , 2017 , 8, 2033	317.4	58
70	Clay minerals mediate folding and regioselective interactions of RNA: a large-scale atomistic simulation study. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13750-64	16.4	56
69	Role of host layer flexibility in DNA guest intercalation revealed by computer simulation of layered nanomaterials. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12485-95	16.4	53
68	Emergence of Undulations and Determination of Materials Properties in Large-Scale Molecular Dynamics Simulation of Layered Double Hydroxides. <i>Chemistry of Materials</i> , 2007 , 19, 5510-5523	9.6	52
67	Wetting Effects and Molecular Adsorption at Hydrated Kaolinite Clay Mineral Surfaces. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 11433-11449	3.8	51
66	Theory, modelling and simulation in origins of life studies. <i>Chemical Society Reviews</i> , 2012 , 41, 5430-46	58.5	50
65	Layered double hydroxide minerals as possible prebiotic information storage and transfer compounds. <i>Origins of Life and Evolution of Biospheres</i> , 2006 , 36, 13-37	1.5	48
64	The Water-Alkane Interface at Various NaCl Salt Concentrations: A Molecular Dynamics Study of the Readily Available Force Fields. <i>Scientific Reports</i> , 2018 , 8, 352	4.9	43
63	Intercalation and in situ polymerization of poly(alkylene oxide) derivatives within M+-montmorillonite (M = Li, Na, K). <i>Journal of Materials Chemistry</i> , 2006 , 16, 1082		42
62	Ion Adsorption at Clay-Mineral Surfaces: The Hofmeister Series for Hydrated Smectite Minerals. <i>Clays and Clay Minerals</i> , 2016 , 64, 472-487	2.1	40
61	Methylene Blue Adsorption on the Basal Surfaces of Kaolinite: Structure and Thermodynamics from Quantum and Classical Molecular Simulation. <i>Clays and Clay Minerals</i> , 2015 , 63, 185-198	2.1	39
60	Understanding Model Crude Oil Component Interactions on Kaolinite Silicate and Aluminol Surfaces: Toward Improved Understanding of Shale Oil Recovery. <i>Energy & Energy & Ener</i>	6 5 ¹	38
59	Interaction of Natural Organic Matter with Layered Minerals: Recent Developments in Computational Methods at the Nanoscale. <i>Minerals (Basel, Switzerland)</i> , 2014 , 4, 519-540	2.4	37
58	Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production. <i>Interface Focus</i> , 2013 , 3, 20120037	3.9	35
57	Selection for fitness at the individual or population levels: modelling effects of genetic modifications in microalgae on productivity and environmental safety. <i>Journal of Theoretical Biology</i> , 2010 , 263, 269-80	2.3	35
56	The effect of interbedding on shale reservoir properties. <i>Marine and Petroleum Geology</i> , 2015 , 67, 154-1	6 97	30
55	Computer simulation of interlayer arrangement in cinnamate intercalated layered double hydroxides. <i>Journal of Molecular Structure</i> , 2003 , 647, 75-83	3.4	30
54	Monomer Adsorption on Kaolinite: Modeling the Essential Ingredients. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 22365-22374	3.8	28

53	Copper(II)-mediated thermolysis of alginates: a model kinetic study on the influence of metal ions in the thermochemical processing of macroalgae. <i>Interface Focus</i> , 2013 , 3, 20120046	3.9	28
52	Role of clay minerals in oil-forming reactions. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 3569-75	2.8	28
51	Serpentinization: Connecting Geochemistry, Ancient Metabolism and Industrial Hydrogenation. <i>Life</i> , 2018 , 8,	3	28
50	Influence of surface chemistry and charge on mineral-RNA interactions. <i>Langmuir</i> , 2013 , 29, 1573-83	4	27
49	Multi-technique approach to the petrophysical characterization of Berea sandstone core plugs (Cleveland Quarries, USA). <i>Journal of Petroleum Science and Engineering</i> , 2017 , 149, 436-455	4.4	26
48	Efficient synthesis of ordered organo-layered double hydroxides. <i>Green Chemistry</i> , 2010 , 12, 688	10	26
47	A one-pot synthesis of hybrid organo-layered double hydroxide catalyst precursors. <i>Green Chemistry</i> , 2006 , 8, 1067	10	25
46	In situ monitoring of crystal growth and dissolution of oriented layered double-hydroxide crystals immobilized on silicon. <i>Journal of Crystal Growth</i> , 2006 , 294, 53-59	1.6	23
45	Stability of free and mineral-protected nucleic acids: Implications for the RNA world. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 83, 360-378	5.5	22
44	Synthesis of organo-layered double hydroxides by an environmentally friendly co-hydration route. <i>Green Chemistry</i> , 2007 , 9, 1299	10	19
43	Geochemical and lithological controls on a potential shale reservoir: Carboniferous Holywell Shale, Wales. <i>Marine and Petroleum Geology</i> , 2016 , 71, 198-210	4.7	17
42	Chiral interactions of histidine in a hydrated vermiculite clay. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 825-30	3.6	17
41	Determining materials properties of natural composites using molecular simulation. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7251		17
40	Biodiesel Production via Trans-Esterification Using Immobilized on Cellulosic Polyurethane. <i>ACS Omega</i> , 2018 , 3, 6804-6811	3.9	17
39	The nutritional aspects of biorefined Saccharina latissima, Ascophyllum nodosum and Palmaria palmata. <i>Biomass Conversion and Biorefinery</i> , 2017 , 7, 221-235	2.3	16
38	Aqueous immiscible layered double hydroxides: synthesis, characterisation and molecular dynamics simulation. <i>Chemical Communications</i> , 2018 , 54, 4394-4397	5.8	16
37	Understanding surface interactions in aqueous miscible organic solvent treated layered double hydroxides. <i>RSC Advances</i> , 2017 , 7, 5076-5083	3.7	15
36	Insights into the behaviour of biomolecules on the early Earth: The concentration of aspartate by layered double hydroxide minerals. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 176, 239-258	5.5	14

35	Iron reduction in nontronite-type clay minerals: Modelling a complex system. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 81, 13-27	5.5	13
34	Changes in higher heating value and ash content of seaweed during ensiling. <i>Journal of Applied Phycology</i> , 2017 , 29, 1037-1046	3.2	12
33	The first 1,2,3-tris(phosphinomethyl)ferrocene. <i>Inorganic Chemistry Communication</i> , 2004 , 7, 923-928	3.1	12
32	Crystal chemistry of natural layered double hydroxides. 5. Single-crystal structure refinement of hydrotalcite, [Mg6Al2(OH)16](CO3)(H2O)4. <i>Mineralogical Magazine</i> , 2019 , 83, 269-280	1.7	12
31	Osmium uptake, distribution, and 187Os/188Os and 187Re/188Os compositions in Phaeophyceae macroalgae, Fucus vesiculosus: Implications for determining the 187Os/188Os composition of seawater. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 199, 48-57	5.5	11
30	Ab initio transition state searching in complex systems: fatty acid decarboxylation in minerals. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 2658-67	2.8	11
29	The design and synthesis of a new potentially C3-symmetric ferrocenylphosphine. <i>Journal of Organometallic Chemistry</i> , 2003 , 679, 59-64	2.3	11
28	Rhenium uptake and distribution in phaeophyceae macroalgae, Fucus vesiculosus. <i>Royal Society Open Science</i> , 2016 , 3, 160161	3.3	10
27	Ion-specific interactions at calcite-brine interfaces: a nano-scale study of the surface charge development and preferential binding of polar hydrocarbons. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 27999-28011	3.6	9
26	A New Framework to Quantify the Wetting Behaviour of Carbonate Rock Surfaces Based on the Relationship between Zeta Potential and Contact Angle. <i>Energies</i> , 2020 , 13, 993	3.1	9
25	Understanding the Swelling Behavior of Modified Nanoclay Filler Particles in Water and Ethanol. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 12625-12642	3.8	9
24	DFT+U investigation of the catalytic properties of ferruginous clay. American Mineralogist, 2013 , 98, 1	32 <u>-</u> 21 9 0	9
23	Morphology and elastic modulus of novel poly[oligo(ethylene glycol) diacrylate]-montmorillonite nanocomposites. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2005 , 43, 1785-1793	2.6	9
22	Biofuels, science and society. <i>Interface Focus</i> , 2013 , 3, 20120093	3.9	8
21	Understanding Cationic Polymer Adsorption on Mineral Surfaces: Kaolinite in Cement Aggregates. <i>Minerals (Basel, Switzerland)</i> , 2018 , 8, 130	2.4	7
20	Peptide Formation on Layered Mineral Surfaces: The Key Role of Brucite-like Minerals on the Enhanced Formation of Alanine Dipeptides. <i>ACS Earth and Space Chemistry</i> , 2018 , 2, 852-862	3.2	7
19	Decoupling a novel Trichormus variabilis-Synechocystis sp. interaction to boost phycoremediation. <i>Scientific Reports</i> , 2019 , 9, 2511	4.9	6
18	Ketone Formation via Decarboxylation Reactions of Fatty Acids Using Solid Hydroxide/Oxide Catalysts. <i>Inorganics</i> , 2018 , 6, 121	2.9	6

17	Thermal Evolution of Natural Layered Double Hydroxides: Insight from Quintinite, Hydrotalcite, Stichtite, and Iowaite as Reference Samples for CO3- and Cl-Members of the Hydrotalcite Supergroup. <i>Minerals (Basel, Switzerland)</i> , 2020 , 10, 961	2.4	5
16	A Deep Look into the Dynamics of Saltwater Imbibition in a Calcite Nanochannel: Temperature Impacts Capillarity Regimes. <i>Langmuir</i> , 2020 , 36, 9035-9046	4	5
15	Ultra-high aspect ratio hybrid materials: the role of organic guest and synthesis method. <i>Dalton Transactions</i> , 2018 , 47, 2933-2938	4.3	5
14	Translocation of isotopically distinct macroalgae: A route to low-cost biomonitoring?. <i>Chemosphere</i> , 2017 , 184, 1175-1185	8.4	5
13	Adding Value to Waste Minerals in a Circular Economy Framework: Ochre-Derived Layered Double Hydroxide Catalysts in Fatty Acid Ketonisation. <i>Minerals (Basel, Switzerland)</i> , 2019 , 9, 681	2.4	4
12	Atomistic Insight into the Behavior of Ions at an Oil-Bearing Hydrated Calcite Surface: Implication to Ion-Engineered Waterflooding. <i>Energy & Energy & Ener</i>	4.1	4
11	Chemical Force Microscopy Study on the Interactions of COOH Functional Groups with Kaolinite Surfaces: Implications for Enhanced Oil Recovery. <i>Minerals (Basel, Switzerland)</i> , 2017 , 7, 250	2.4	3
10	Bioenergy production using Trichormus variabilis he review. <i>Biofuels, Bioproducts and Biorefining</i> , 2019 , 13, 1365-1382	5.3	2
9	Analytical solution for clay plug swelling experiments. <i>Applied Clay Science</i> , 2017 , 149, 75-78	5.2	2
8	Modeling Layered-Mineral Organic Interactions 2010 , 255-279		2
7	Reduced to Hierarchy: Carbon Filament-Supported Mixed Metal Oxide Nanoparticles. <i>ACS Omega</i> , 2019 , 4, 20230-20236	3.9	2
6	Heterogeneous ketonic decarboxylation of dodecanoic acid: studying reaction parameters <i>RSC Advances</i> , 2021 , 11, 35575-35584	3.7	1
5	Solution-state behaviour of algal mono-uronates evaluated by pure shift and compressive sampling NMR techniques. <i>Carbohydrate Research</i> , 2020 , 495, 108087	2.9	1
4	Opening the: NMR spectroscopic analysis of the interactions between s-block cations and kelp monosaccharides. <i>Dalton Transactions</i> , 2021 , 50, 13246-13255	4.3	O
3	DynDen: Assessing convergence of molecular dynamics simulations of interfaces. <i>Computer Physics Communications</i> , 2021 , 269, 108126	4.2	0
2	Effect of Structural Fe Reduction on Water Sorption by Swelling and Non-Swelling Clay Minerals. <i>Minerals (Basel, Switzerland)</i> , 2022 , 12, 453	2.4	O

Gaining Insight into the Structure and Dynamics of ClayPolymer Nanocomposite Systems Through Computer Simulation **2008**, 175-203