David J Eldridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3444741/publications.pdf Version: 2024-02-01

		19636	19169
245	16,867	61	118
papers	citations	h-index	g-index
251	251	251	14385
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A global atlas of the dominant bacteria found in soil. Science, 2018, 359, 320-325.	6.0	1,386
2	Plant Species Richness and Ecosystem Multifunctionality in Global Drylands. Science, 2012, 335, 214-218.	6.0	1,043
3	Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecology Letters, 2011, 14, 709-722.	3.0	864
4	Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 2013, 502, 672-676.	13.7	733
5	Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the United States of America, 2015, 112, 15684-15689.	3.3	728
6	Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology and Evolution, 2020, 4, 210-220.	3.4	543
7	Microbiotic soil crusts - a review of their roles in soil and ecological processes in the rangelands of Australia. Soil Research, 1994, 32, 389.	0.6	479
8	A few Ascomycota taxa dominate soil fungal communities worldwide. Nature Communications, 2019, 10, 2369.	5.8	341
9	Structure and Functioning of Dryland Ecosystems in a Changing World. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 215-237.	3.8	330
10	Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters, 2017, 20, 1295-1305.	3.0	285
11	Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecological Applications, 2016, 26, 1273-1283.	1.8	257
12	Dryland ecohydrology and climate change: critical issues and technical advances. Hydrology and Earth System Sciences, 2012, 16, 2585-2603.	1.9	241
13	Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. Catena, 2000, 40, 323-336.	2.2	227
14	Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena, 2013, 104, 153-160.	2.2	206
15	Exploring some relationships between biological soil crusts, soil aggregation and wind erosion. Journal of Arid Environments, 2003, 53, 457-466.	1.2	192
16	Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME Journal, 2021, 15, 2081-2091.	4.4	186
17	Invasions: the trail behind, the path ahead, and a test of a disturbing idea. Journal of Ecology, 2012, 100, 116-127.	1.9	180
18	A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia. Australian Journal of Botany, 2007, 55, 401.	0.3	164

#	Article	IF	CITATIONS
19	Changes in belowground biodiversity during ecosystem development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6891-6896.	3.3	151
20	Global ecological predictors of the soil priming effect. Nature Communications, 2019, 10, 3481.	5.8	148
21	Biogeography of global drylands. New Phytologist, 2021, 231, 540-558.	3.5	145
22	Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution, 2018, 2, 1925-1932.	3.4	140
23	Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: Towards a unifying framework. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 247-258.	1.1	136
24	The pervasive and multifaceted influence of biocrusts on water in the world's drylands. Global Change Biology, 2020, 26, 6003-6014.	4.2	129
25	Microbial richness and composition independently drive soil multifunctionality. Functional Ecology, 2017, 31, 2330-2343.	1.7	126
26	Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. Journal of Ecology, 2018, 106, 242-253.	1.9	123
27	Interactive Effects of Three Ecosystem Engineers on Infiltration in a Semi-Arid Mediterranean Grassland. Ecosystems, 2010, 13, 499-510.	1.6	122
28	Morphological groups: a framework for monitoring microphytic crusts in arid landscapes. Journal of Arid Environments, 1999, 41, 11-25.	1.2	120
29	Do grazing intensity and herbivore type affect soil health? Insights from a semiâ€arid productivity gradient. Journal of Applied Ecology, 2017, 54, 976-985.	1.9	114
30	Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24345-24351.	3.3	113
31	Biocrusts: the living skin of the earth. Plant and Soil, 2018, 429, 1-7.	1.8	111
32	Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytologist, 2018, 219, 574-587.	3.5	107
33	Microphytic crusts, shrub patches and water harvesting in the Negev Desert: the Shikim system. Landscape Ecology, 2002, 17, 587-597.	1.9	104
34	Biocrustâ€forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands. New Phytologist, 2016, 209, 1540-1552.	3.5	101
35	Germination and seedling establishment of two annual grasses on lichen-dominated biological soil crusts. Plant and Soil, 2007, 295, 23-35.	1.8	99
36	Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology. Biodiversity and Conservation, 2014, 23, 1619-1637.	1.2	98

#	Article	IF	CITATIONS
37	Influence of cryptogamic crust disturbance to wind erosion on sand and loam rangeland soils. Earth Surface Processes and Landforms, 1998, 23, 963-974.	1.2	96
38	Reintroduction of fossorial native mammals and potential impacts on ecosystem processes in an Australian desert landscape. Biological Conservation, 2007, 138, 351-359.	1.9	96
39	Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores. Ecology, 2017, 98, 1922-1931.	1.5	96
40	Trampling of microphytic crusts on calcareous soils, and its impact on erosion under rain-impacted flow. Catena, 1998, 33, 221-239.	2.2	94
41	Ecosystem wicks: Woodland trees enhance water infiltration in a fragmented agricultural landscape in eastern Australia. Austral Ecology, 2005, 30, 336-347.	0.7	93
42	Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands. Clobal Ecology and Biogeography, 2014, 23, 1408-1416.	2.7	93
43	Towards a predictive framework for biocrust mediation of plant performance: A metaâ€analysis. Journal of Ecology, 2019, 107, 2789-2807.	1.9	92
44	Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Science Advances, 2017, 3, e1602008.	4.7	91
45	Continentalâ€scale Impacts of Livestock Grazing on Ecosystem Supporting and Regulating Services. Land Degradation and Development, 2017, 28, 1473-1481.	1.8	88
46	What is a biocrust? A refined, contemporary definition for a broadening research community. Biological Reviews, 2022, 97, 1768-1785.	4.7	87
47	Assessment of sediment yield by splash erosion on a semi-arid soil with varying cryptogam cover. Journal of Arid Environments, 1994, 26, 221-232.	1.2	84
48	Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Science Advances, 2021, 7, .	4.7	83
49	Grazing dampens the positive effects of shrub encroachment on ecosystem functions in a semiâ€arid woodland. Journal of Applied Ecology, 2013, 50, 1028-1038.	1.9	81
50	Are shrubs really a sign of declining ecosystem function? Disentangling the myths and truths of woody encroachment in Australia. Australian Journal of Botany, 2014, 62, 594.	0.3	81
51	Pediatric Peripheral Intravenous Access. Journal of Infusion Nursing, 2010, 33, 226-235.	1.2	80
52	Positive effects of shrubs on plant species diversity do not change along a gradient in grazing pressure in an arid shrubland. Basic and Applied Ecology, 2012, 13, 159-168.	1.2	77
53	Controls on Distribution Patterns of Biological Soil Crusts at Micro- to Global Scales. Ecological Studies, 2016, , 173-197.	0.4	77
54	Climate and soil attributes determine plant species turnover in global drylands. Journal of Biogeography, 2014, 41, 2307-2319.	1.4	76

#	Article	IF	CITATIONS
55	Foraging animals create fertile patches in an Australian desert shrubland. Ecography, 2009, 32, 723-732.	2.1	74
56	Soilâ€disturbance by native animals plays a critical role in maintaining healthy Australian landscapes. Ecological Management and Restoration, 2009, 10, S27.	0.7	73
57	Functional traits determine plant co-occurrence more than environment or evolutionary relatedness in global drylands. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 164-173.	1.1	73
58	Cross-Biome Drivers of Soil Bacterial Alpha Diversity on a Worldwide Scale. Ecosystems, 2019, 22, 1220-1231.	1.6	71
59	Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nature Ecology and Evolution, 2017, 1, 1339-1347.	3.4	70
60	Global metaâ€analysis of soilâ€disturbing vertebrates reveals strong effects on ecosystem patterns and processes. Global Ecology and Biogeography, 2019, 28, 661-679.	2.7	70
61	Soil-foraging animals alter the composition and co-occurrence of microbial communities in a desert shrubland. ISME Journal, 2015, 9, 2671-2681.	4.4	69
62	Assessment of erosion rates from microphyte-dominated calcareous soils under rain-impacted flow. Soil Research, 1997, 35, 475.	0.6	68
63	Environmental Factors Relating to the Distribution of Terricolous Bryophytes and Lichens in Semi-Arid Eastern Australia. Bryologist, 1997, 100, 28.	0.1	67
64	Hydrology in a patterned landscape is co-engineered by soil-disturbing animals and biological crusts. Soil Biology and Biochemistry, 2013, 61, 14-22.	4.2	64
65	Recovery of Biological Soil Crusts following Wildfire in Ldaho. Journal of Range Management, 2004, 57, 89.	0.3	63
66	Effect of ants on sandy soils in semi-arid eastern Australia - Local distribution of nest entrances and their effect on infiltration of water. Soil Research, 1993, 31, 509.	0.6	61
67	Grazing modulates soil temperature and moisture in a Eurasian steppe. Agricultural and Forest Meteorology, 2018, 262, 157-165.	1.9	60
68	Foraging pits of the short-beaked echidna (Tachyglossus aculeatus) as small-scale patches in a semi-arid Australian box woodland. Soil Biology and Biochemistry, 2007, 39, 1055-1065.	4.2	57
69	Shrub encroachment alters the spatial patterns of infiltration. Ecohydrology, 2015, 8, 83-93.	1.1	57
70	The impact of warrens of the European rabbit (Oryctolagus cuniculus L.) on soil and ecological processes in a semi-arid Australian woodland. Journal of Arid Environments, 2001, 47, 325-337.	1.2	56
71	Rabbit (Oryctolagus cuniculus L.) impacts on vegetation and soils, and implications for management of wooded rangelands. Basic and Applied Ecology, 2002, 3, 19-29.	1.2	55
72	Hip holes: kangaroo (Macropus spp.) resting sites modify the physical and chemical environment of woodland soils. Austral Ecology, 2002, 27, 527-536.	0.7	55

#	Article	IF	CITATIONS
73	Soil-Surface Characteristics, Microtopography and Proximity to Mature Shrubs: Effects on Survival of Several Cohorts of Atriplex Vesicaria Seedlings. Journal of Ecology, 1991, 79, 357.	1.9	54
74	Distribution and Floristics of Terricolous Lichens in Soil Crusts in Arid and Semi-Arid New South Wales, Australia. Australian Journal of Botany, 1996, 44, 581.	0.3	54
75	The Role of Biocrusts in Arid Land Hydrology. Ecological Studies, 2016, , 321-346.	0.4	54
76	Nurse plant effects on plant species richness in drylands: The role of grazing, rainfall and species specificity. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 402-410.	1.1	53
77	Managing semi-arid woodlands for carbon storage: Grazing and shrub effects on above- and belowground carbon. Agriculture, Ecosystems and Environment, 2013, 169, 1-11.	2.5	53
78	Grazing and drought reduce cyanobacterial soil crusts in an Australian Acacia woodland. Journal of Arid Environments, 2008, 72, 1064-1075.	1.2	51
79	Peripheral Intravenous Access in Pediatric Inpatients. Clinical Pediatrics, 2012, 51, 468-472.	0.4	50
80	Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function?. Functional Ecology, 2014, 28, 530-537.	1.7	50
81	Resource Utilization and Cost of Inserting Peripheral Intravenous Catheters in Hospitalized Children. Hospital Pediatrics, 2013, 3, 185-191.	0.6	49
82	Distribution and floristics of moss- and lichen-dominated soil crusts in a patterned Callitris glaucophylla woodland in eastern Australia. Acta Oecologica, 1999, 20, 159-170.	0.5	47
83	The influence of soil age on ecosystem structure and function across biomes. Nature Communications, 2020, 11, 4721.	5.8	47
84	Formation of nutrientâ€poor soil patches in a semiâ€arid woodland by the European rabbit (<i>Oryctolagus cuniculus</i> L.). Austral Ecology, 2008, 33, 88-98.	0.7	46
85	Biocrustâ€forming mosses mitigate the impact of aridity on soil microbial communities in drylands: observational evidence from three continents. New Phytologist, 2018, 220, 824-835.	3.5	46
86	Biocrust morphology is linked to marked differences in microbial community composition. Plant and Soil, 2018, 429, 65-75.	1.8	46
87	Badger (Taxidea taxus) disturbances increase soil heterogeneity in a degraded shrub-steppe ecosystem. Journal of Arid Environments, 2009, 73, 66-73.	1.2	45
88	Shrub encroachment is linked to extirpation of an apex predator. Journal of Animal Ecology, 2017, 86, 147-157.	1.3	45
89	Clumped and isolated trees influence soil nutrient levels in an Australian temperate box woodland. Plant and Soil, 2005, 270, 331-342.	1.8	44
90	Animal disturbances promote shrub maintenance in a desertified grassland. Journal of Ecology, 2009, 97, 1302-1310.	1.9	44

#	Article	IF	CITATIONS
91	Informing climate adaptation pathways in multi-use woodland landscapes using the values-rules-knowledge framework. Agriculture, Ecosystems and Environment, 2017, 241, 39-53.	2.5	44
92	Effects of ants on sandy soils in semi-arid eastern Australia .2. Relocation of nest entrances and consequences for bioturbation. Soil Research, 1994, 32, 323.	0.6	43
93	Distribution and Floristics of Bryophytes in Soil Crusts in Semi-Arid and Arid Eastern Australia. Australian Journal of Botany, 1996, 44, 223.	0.3	43
94	Plant and soil surface responses to a combination of shrub removal and grazing in a shrub-encroached woodland. Journal of Environmental Management, 2010, 91, 2639-2648.	3.8	43
95	Aridity Decouples C:N:P Stoichiometry Across Multiple Trophic Levels in Terrestrial Ecosystems. Ecosystems, 2018, 21, 459-468.	1.6	40
96	Mammalian engineers drive soil microbial communities and ecosystem functions across a disturbance gradient. Journal of Animal Ecology, 2016, 85, 1636-1646.	1.3	39
97	Livestock grazing and aridity reduce the functional diversity of biocrusts. Plant and Soil, 2018, 429, 175-185.	1.8	39
98	Can the invasive European rabbit (Oryctolagus cuniculus) assume the soil engineering role of locally-extinct natives?. Biological Invasions, 2011, 13, 3027-3038.	1.2	38
99	MOUNDS OF THE AMERICAN BADGER (TAXIDEA TAXUS): SIGNIFICANT FEATURES OF NORTH AMERICAN SHRUB–STEPPE ECOSYSTEMS. Journal of Mammalogy, 2004, 85, 1060-1067.	0.6	37
100	Foraging pits, litter and plant germination in an arid shrubland. Journal of Arid Environments, 2010, 74, 516-520.	1.2	37
101	White cypress pine (Callitris glaucophylla): a review of its roles in landscape and ecological processes in eastern Australia. Australian Journal of Botany, 2005, 53, 555.	0.3	36
102	Diversity and Abundance of Biological Soil Crust Taxa in Relation to Fine and Coarse-Scale Disturbances in a Grassy Eucalypt Woodland in Eastern Australia. Plant and Soil, 2006, 281, 255-268.	1.8	36
103	Animal foraging as a mechanism for sediment movement and soil nutrient development: Evidence from the semi-arid Australian woodlands and the Chihuahuan Desert. Geomorphology, 2012, 157-158, 131-141.	1.1	36
104	Effects of Local-Scale Disturbance on Biocrusts. Ecological Studies, 2016, , 429-449.	0.4	35
105	Australian dryland soils are acidic and nutrientâ€depleted, and have unique microbial communities compared with other drylands. Journal of Biogeography, 2018, 45, 2803-2814.	1.4	35
106	Surface indicators are correlated with soil multifunctionality in global drylands. Journal of Applied Ecology, 2020, 57, 424-435.	1.9	35
107	Do shrubs reduce the adverse effects of grazing on soil properties?. Ecohydrology, 2015, 8, 1503-1513.	1.1	34
108	Livestock activity increases exotic plant richness, but wildlife increases native richness, with stronger effects under low productivity. Journal of Applied Ecology, 2018, 55, 766-776.	1.9	34

#	ARTICLE	IF	CITATIONS
109	A global database of shrub encroachment effects on ecosystem structure and functioning. Ecology, 2012, 93, 2499-2499.	1.5	33
110	Human impacts and aridity differentially alter soil <scp>N</scp> availability in drylands worldwide. Global Ecology and Biogeography, 2016, 25, 36-45.	2.7	33
111	A multifaceted view on the impacts of shrub encroachment. Applied Vegetation Science, 2016, 19, 369-370.	0.9	33
112	Functional groups of soil fungi decline under grazing. Plant and Soil, 2018, 426, 51-60.	1.8	33
113	Laboratory-based techniques for assessing the functional traits of biocrusts. Plant and Soil, 2016, 406, 131-143.	1.8	32
114	Short-Term Vegetation and Soil Responses to Mechanical Destruction of Rabbit (Oryctolagus) Tj ETQq0 0 0 rgBT	/Overlock 1.4	101f 50 54
115	Structure of biological soil crust communities in Callitris glaucophylla woodlands of New South Wales, Australia. Journal of Vegetation Science, 2006, 17, 271-280.	1.1	31
116	Bromus tectorum litter alters photosynthetic characteristics of biological soil crusts from a semiarid shrubland. Soil Biology and Biochemistry, 2013, 60, 220-230.	4.2	31
117	The fertile island effect collapses under extreme overgrazing: evidence from a shrub-encroached grassland. Plant and Soil, 2020, 448, 201-212.	1.8	31
118	Structure, Composition, and Function of Biocrust Lichen Communities. Ecological Studies, 2016, , 121-138.	0.4	30
119	Feral horse activity reduces environmental quality in ecosystems globally. Biological Conservation, 2020, 241, 108367.	1.9	30
120	Livestock grazing reinforces the competitive exclusion of smallâ€bodied birds by large aggressive birds. Journal of Applied Ecology, 2018, 55, 1919-1929.	1.9	29
121	Grazing Regulates the Spatial Heterogeneity of Soil Microbial Communities Within Ecological Networks. Ecosystems, 2020, 23, 932-942.	1.6	29
122	Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes. Molecular Ecology, 2020, 29, 752-761.	2.0	29
123	Abiotic effects predominate under prolonged livestockâ€induced disturbance. Austral Ecology, 2011, 36, 367-377.	0.7	28
124	Ecology and Management of Biological Soil Crusts: Recent Developments and Future Challenges. Bryologist, 2000, 103, 742-747.	0.1	27
125	Frequent fire promotes diversity and cover of biological soil crusts in a derived temperate grassland. Oecologia, 2009, 159, 827-838.	0.9	27

126Surface destabilisation by the invasive burrowing engineer Mus musculus on a sub-Antarctic island.
Geomorphology, 2014, 223, 61-66.1.126

#	Article	IF	CITATIONS
127	The fertile island effect varies with aridity and plant patch type across an extensive continental gradient. Plant and Soil, 2021, 459, 173-183.	1.8	26
128	Remove or retain: ecosystem effects of woody encroachment and removal are linked to plant structural and functional traits. New Phytologist, 2021, 229, 2637-2646.	3.5	26
129	Deposition of sand over a cyanobacterial soil crust increases nitrogen bioavailability in a semi-arid woodland. Applied Soil Ecology, 2011, 49, 26-31.	2.1	25
130	Optimising carbon sequestration in arid and semiarid rangelands. Ecological Engineering, 2015, 74, 148-163.	1.6	25
131	Spatial patterns of infiltration vary with disturbance in a shrub-encroached woodland. Geomorphology, 2013, 194, 57-64.	1.1	24
132	What do site condition multi-metrics tell us about species biodiversity?. Ecological Indicators, 2014, 38, 262-271.	2.6	24
133	Microsite Differentiation Drives the Abundance of Soil Ammonia Oxidizing Bacteria along Aridity Gradients. Frontiers in Microbiology, 2016, 7, 505.	1.5	24
134	Contrasting Effects of Aridity and Grazing Intensity on Multiple Ecosystem Functions and Services in Australian Woodlands. Land Degradation and Development, 2017, 28, 2098-2108.	1.8	24
135	Multiple tradeâ€offs regulate the effects of woody plant removal on biodiversity and ecosystem functions in global rangelands. Global Change Biology, 2020, 26, 709-720.	4.2	24
136	Dual community assembly processes in dryland biocrust communities. Functional Ecology, 2020, 34, 877-887.	1.7	24
137	Contrasting environmental preferences of photosynthetic and nonâ€photosynthetic soil cyanobacteria across the globe. Global Ecology and Biogeography, 2020, 29, 2025-2038.	2.7	24
138	Burning and Seeding Influence Soil Surface Morphology in an Artemisia Shrubland in Southern Idaho. Arid Land Research and Management, 2003, 17, 1-11.	0.6	23
139	Landscape position moderates how ant nests affect hydrology and soil chemistry across a Chihuahuan Desert watershed. Landscape Ecology, 2008, 23, 961.	1.9	23
140	Accounting for space and time in soil carbon dynamics in timbered rangelands. Ecological Engineering, 2012, 38, 51-64.	1.6	23
141	Animal foraging pit soil enhances the performance of a native grass under stressful conditions. Plant and Soil, 2012, 352, 341-351.	1.8	23
142	Microsite and grazing intensity drive infiltration in a semiarid woodland. Ecohydrology, 2017, 10, e1831.	1.1	23
143	Introduced and native herbivores have different effects on plant composition in low productivity ecosystems. Applied Vegetation Science, 2018, 21, 45-54.	0.9	23
144	Effects of climate legacies on above―and belowground community assembly. Global Change Biology, 2018, 24, 4330-4339.	4.2	23

#	Article	IF	CITATIONS
145	A practical guide to measuring functional indicators and traits in biocrusts. Restoration Ecology, 2020, 28, S56.	1.4	23
146	Increases in aridity lead to drastic shifts in the assembly of dryland complex microbial networks. Land Degradation and Development, 2020, 31, 346-355.	1.8	23
147	Biotic and abiotic effects on biocrust cover vary with microsite along an extensive aridity gradient. Plant and Soil, 2020, 450, 429-441.	1.8	23
148	Sarcoptes mange (Sarcoptes scabiei) increases diurnal activity of bare-nosed wombats (Vombatus) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 5
149	Soil nutrients under shrub hummocks and debris mounds two decades after ploughing. Plant and Soil, 2012, 351, 405-419.	1.8	22
150	Ant colonies promote the diversity of soil microbial communities. ISME Journal, 2019, 13, 1114-1118.	4.4	21
151	Ploughing and grazing alter the spatial patterning of surface soils in a shrub-encroached woodland. Geoderma, 2013, 200-201, 67-76.	2.3	20
152	Soil surface complexity has a larger effect on food exploitation by ants than a change from grassland to shrubland. Ecological Entomology, 2018, 43, 379-388.	1.1	20
153	Contrasting global effects of woody plant removal on ecosystem structure, function and composition. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 39, 125460.	1.1	20
154	The influence of climatic legacies on the distribution of dryland biocrust communities. Global Change Biology, 2019, 25, 327-336.	4.2	20
155	Interconnected effects of shrubs, invertebrateâ€derived macropores and soil texture on water infiltration in a semiâ€arid savanna rangeland. Land Degradation and Development, 2020, 31, 2307-2318.	1.8	20
156	Landform and vegetation patch type moderate the effects of grazing-induced disturbance on carbon and nitrogen pools in a semi-arid woodland. Plant and Soil, 2012, 360, 405-419.	1.8	19
157	Biophysical risks to carbon sequestration and storage in Australian drylands. Journal of Environmental Management, 2018, 208, 102-111.	3.8	19
158	Recovery of biological soil crusts following wildfire in Idaho. Rangeland Ecology and Management, 2004, 57, 89-96.	1.1	17
159	Grazing reduces the capacity of Landscape Function Analysis to predict regional-scale nutrient availability or decomposition, but not total nutrient pools. Ecological Indicators, 2018, 90, 494-501.	2.6	17
160	Experimental evidence of strong relationships between soil microbial communities and plant germination. Journal of Ecology, 2021, 109, 2488-2498.	1.9	17
161	Landscape modulators and resource accumulation in a post-fire eucalypt woodland. Forest Ecology and Management, 2012, 285, 11-19.	1.4	16
162	Increased rainfall frequency triggers an increase in litter fall rates of reproductive structures in an arid eucalypt woodland. Austral Ecology, 2013, 38, 820-830.	0.7	16

#	Article	IF	CITATIONS
163	Large shrubs partly compensate negative effects of grazing on hydrological function in a semi-arid savanna. Basic and Applied Ecology, 2019, 38, 58-68.	1.2	16
164	Horse Activity is Associated with Degraded Subalpine Grassland Structure and Reduced Habitat for a Threatened Rodent. Rangeland Ecology and Management, 2019, 72, 467-473.	1.1	16
165	Restoration potential of threatened ecosystem engineers increases with aridity: broad scale effects on soil nutrients and function. Ecography, 2019, 42, 1370-1382.	2.1	16
166	Soil disturbance by animals at varying spatial scales in a semi-arid Australian woodland. Rangeland Journal, 2008, 30, 327.	0.4	15
167	Soil disturbance by native animals along grazing gradients in an arid grassland. Journal of Arid Environments, 2009, 73, 1144-1148.	1.2	15
168	Resilience of soil seed banks to site degradation in intermittently flooded riverine woodlands. Journal of Vegetation Science, 2010, 21, 157-166.	1.1	15
169	Tetrasilane and digermane for the ultra-high vacuum chemical vapor deposition of SiGe alloys. Thin Solid Films, 2016, 604, 23-27.	0.8	15
170	Rabbits and livestock grazing alter the structure and composition of mid-storey plants in a wooded dryland. Agriculture, Ecosystems and Environment, 2019, 277, 53-60.	2.5	15
171	Directional trends in species composition over time can lead to a widespread overemphasis of year asynchrony. Journal of Vegetation Science, 2020, 31, 792-802.	1.1	15
172	Carbon storage in soil and vegetation in paired roadside sites in the box woodlands of eastern Australia. Australian Forestry, 2002, 65, 268-272.	0.3	14
173	Badger (Taxidea taxus) Mounds Affect Soil Hydrological Properties in a Degraded Shrub-Steppe. American Midland Naturalist, 2009, 161, 350-358.	0.2	14
174	Does fire affect the ground-dwelling arthropod community through changes to fine-scale resource patches?. International Journal of Wildland Fire, 2015, 24, 550.	1.0	14
175	Does litter decomposition vary between the foraging pits of two soilâ€disturbing mammal species?. Earth Surface Processes and Landforms, 2016, 41, 669-676.	1.2	14
176	The resource coupling role of animal foraging pits in semiâ€arid woodlands. Ecohydrology, 2011, 4, 623-630.	1.1	13
177	Experimentally testing the species-habitat size relationship on soil bacteria: A proof of concept. Soil Biology and Biochemistry, 2018, 123, 200-206.	4.2	13
178	Do landscape health indices reflect arthropod biodiversity status in the eucalypt woodlands of eastern Australia?. Austral Ecology, 2011, 36, 800-813.	0.7	12
179	Biological Soil Crusts as a Model System in Ecology. Ecological Studies, 2016, , 407-425.	0.4	12
180	Risks to carbon dynamics in semi-arid woodlands of eastern Australia under current and future climates. Journal of Environmental Management, 2019, 235, 500-510.	3.8	12

#	Article	IF	CITATIONS
181	Recent grazing reduces reptile richness but historic grazing filters reptiles based on their functional traits. Journal of Applied Ecology, 2019, 56, 833-842.	1.9	12
182	Grazing and aridity have contrasting effects on the functional and taxonomic diversity of ants. Basic and Applied Ecology, 2020, 48, 73-82.	1.2	12
183	Diversity-productivity relationships vary in response to increasing land-use intensity. Plant and Soil, 2020, 450, 511-520.	1.8	12
184	Climate and plants regulate the spatial variation in soil multifunctionality across a climatic gradient. Catena, 2021, 201, 105233.	2.2	12
185	Biocrust islands enhance infiltration, and reduce runoff and sediment yield on a heavily salinized dryland soil. Geoderma, 2021, 404, 115329.	2.3	12
186	The influence of shrub species and fine-scale plant density on arthropods in a semiarid shrubland. Rangeland Journal, 2016, 38, 381.	0.4	12
187	Temperature and Rainfall Patterns Constrain the Multidimensional Rewilding of Global Forests. Advanced Science, 2022, 9, e2201144.	5.6	12
188	The geomorphic signature of bare-nosed wombats (Vombatus ursinus) and cattle (Bos taurus) in an agricultural riparian ecosystem. Geomorphology, 2011, 130, 365-373.	1.1	11
189	Disturbances by desert rodents are more strongly associated with spatial changes in soil texture than woody encroachment. Plant and Soil, 2014, 381, 395-404.	1.8	11
190	Detecting environmental change in eastern Australia: rangeland health in the semi-arid woodlands. Science of the Total Environment, 2003, 310, 211-219.	3.9	10
191	On the interaction between tree canopy position and environmental effects on soil attributes and plant communities. Journal of Vegetation Science, 2015, 26, 1030-1042.	1.1	10
192	Biotic communities cannot mitigate the negative effects of grazing on multiple ecosystem functions and services in an arid shrubland. Plant and Soil, 2016, 401, 381-395.	1.8	10
193	Does the morphology of animal foraging pits influence secondary seed dispersal by ants?. Austral Ecology, 2017, 42, 920-928.	0.7	10
194	Perennial plant patches are sinks for seeds in semiâ€arid woodlands in varying condition. Applied Vegetation Science, 2020, 23, 377-385.	0.9	10
195	Global diversity and ecological drivers of lichenised soil fungi. New Phytologist, 2021, 231, 1210-1219.	3.5	10
196	Soil Biota in Banded Landscapes. Ecological Studies, 2001, , 105-131.	0.4	10
197	Structure of biological soil crust communities in Callitris glaucophylla woodlands of New South Wales, Australia. Journal of Vegetation Science, 2006, 17, 271.	1.1	10
198	Temporal dynamics in biotic and functional recovery following mining. Journal of Applied Ecology, 2022, 59, 1632-1643.	1.9	10

#	Article	IF	CITATIONS
199	Microbial communities are associated with indicators of soil surface condition across a continental gradient. Geoderma, 2022, 405, 115439.	2.3	9
200	Ecosystem functions are related to tree diversity in forests but soil biodiversity in open woodlands and shrublands. Journal of Ecology, 2021, 109, 4158-4170.	1.9	9
201	Drivers of soil biodiversity vary with organism type along an extensive aridity gradient. Applied Soil Ecology, 2022, 170, 104271.	2.1	9
202	Livestock grazing and forest structure regulate the assembly of ecological clusters within plant networks in eastern Australia. Journal of Vegetation Science, 2018, 29, 788-797.	1.1	8
203	Experimental evidence for ecological cascades following threatened mammal reintroduction. Ecology, 2021, 102, e03191.	1.5	8
204	Temporal changes in soil function in a wooded dryland following simulated disturbance by a vertebrate engineer. Catena, 2021, 200, 105166.	2.2	8
205	Biocrust functional traits reinforce runon-runoff patchiness in drylands. Geoderma, 2021, 400, 115152.	2.3	8
206	Wombats and domestic livestock as potential vectors of Cryptosporidium and Giardia in an agricultural riparian area. Australian Journal of Zoology, 2010, 58, 150.	0.6	7
207	Shrub patches capture tumble plants: potential evidence for a self-reinforcing pattern in a semiarid shrub encroached grassland. Plant and Soil, 2019, 442, 311-321.	1.8	7
208	Effect of shrubs on soil saturated hydraulic conductivity depends on the grazing regime in a semi-arid shrub-encroached grassland. Catena, 2021, 207, 105680.	2.2	7
209	Occurrence of Australian woody species is driven by soil moisture and available phosphorus across a climatic gradient. Journal of Vegetation Science, 2021, 32, e13095.	1.1	7
210	Contrasting effects of two mammalian soil engineers on microbial communities. Austral Ecology, 2017, 42, 380-384.	0.7	6
211	Ants respond more strongly to grazing than changes in shrub cover. Land Degradation and Development, 2018, 29, 907-915.	1.8	6
212	Analysis of crossing at the 2014 FIFA World Cup. International Journal of Performance Analysis in Sport, 2018, 18, 657-677.	0.5	6
213	Ecosystem properties in urban areas vary with habitat type and settlement age. Plant and Soil, 2021, 461, 489-500.	1.8	6
214	Grazing impacts on ecosystem functions exceed those from mowing. Plant and Soil, 2021, 464, 579.	1.8	6
215	The Impact of Climate Variability on Land Use and Livelihoods in Australia's Rangelands. , 2018, , 293-315.		6
216	Roadside verges support greater ecosystem functions than adjacent agricultural land in a grassy woodland. Journal of Environmental Management, 2022, 308, 114625.	3.8	6

#	Article	IF	CITATIONS
217	Global synthesis reveals strong multifaceted effects of eucalypts on soils. Global Ecology and Biogeography, 2022, 31, 1667-1678.	2.7	6
218	Ecosystem structure, function and composition in rangelands are negatively affected by livestock grazing. , 0, , .		5
219	Livestock and kangaroo grazing have little effect on biomass and fuel hazard in semi-arid woodlands. Forest Ecology and Management, 2020, 467, 118165.	1.4	5
220	Grow wider canopies or thicker stems: Variable response of woody plants to increasing dryness. Global Ecology and Biogeography, 2021, 30, 183-195.	2.7	5
221	Lowâ€intensity kangaroo grazing has largely benign effects on soil health. Ecological Management and Restoration, 2021, 22, 58-63.	0.7	5
222	Climate Change Impacts on Soil Processes in Rangelands. Soil Biology, 2011, , 237-255.	0.6	5
223	Implanter Source Life and Stability Improvement Using In-Situ Chemical Cleaning. , 2008, , .		4
224	5. Bryophyte and Lichen Diversity on Arid Soils: Determinants and Consequences. , 2017, , 73-96.		4
225	Is the removal of aboveground shrub biomass an effective technique to restore a shrubâ€encroached grassland?. Restoration Ecology, 2019, 27, 1348-1356.	1.4	4
226	LOTVS: A global collection of permanent vegetation plots. Journal of Vegetation Science, 2022, 33, .	1.1	4
227	A Global Synthesis of the Effects of Livestock Activity on Hydrological Processes. Ecosystems, 2022, 25, 1780-1791.	1.6	4
228	Incubation mound building by the Australian megapode (malleefowl, <i>Leipoa ocellata</i>) creates novel, resourceâ€rich patches in a semiâ€arid woodland. Journal of Ecology, 2022, 110, 1432-1441.	1.9	4
229	Decreasing Beam Auto Tuning Interruption Events with In-Situ Chemical Cleaning on Axcelis GSD. , 2008, , .		3
230	Vegetation changes associated with cattle (<i>Bos taurus</i>) and wombat (<i>Vombatus ursinus</i>) activity in a riparian forest. Applied Vegetation Science, 2012, 15, 62-70.	0.9	3
231	Does artificial light influence the activity of vertebrates beneath rural buildings?. Australian Journal of Zoology, 2013, 61, 424.	0.6	3
232	Towards wind farm performance optimization through empirical models. , 2014, , .		3
233	Evidence for the Spatial Self-organisation of Litter Patches in a Semi-arid Woodland. Ecosystems, 2015, 18, 958-970.	1.6	3
234	Centre Passes in the UK Netball Super League. International Journal of Performance Analysis in Sport, 2016, 16, 389-400.	0.5	3

#	Article	IF	CITATIONS
235	Remotely sensed canopy height reveals three pantropical ecosystem states: aÂcomment. Ecology, 2018, 99, 231-234.	1.5	3
236	Communityâ€level responses to increasing dryness vary with plant growth form across an extensive aridity gradient. Journal of Biogeography, 2021, 48, 1788-1796.	1.4	3
237	Influence of cryptogamic crust disturbance to wind erosion on sand and loam rangeland soils. Earth Surface Processes and Landforms, 1998, 23, 963-974.	1.2	3
238	Optimization of Xenon Difluoride Vapor Delivery. , 2008, , .		2
239	Limited longâ€ŧerm effectiveness of rollerâ€chopping for managing woody encroachment. Restoration Ecology, 2021, 29, .	1.4	2
240	The characteristics of GeSn p-n junction devices fabricated by molecular beam epitaxy. , 2016, , .		1
241	Response to comment on "Climate legacies drive global soil carbon stocks in terrestrial ecosystemâ€. Science Advances, 2018, 4, eaat1296.	4.7	1
242	Comment on â€~Kidron, G. J. (2018). Biocrust research: A critical view on eight common hydrologicalâ€related paradigms and dubious theses. <i>Ecohydrology</i> , e2061'. Ecohydrology, 2020, 13, e2215.	1.1	1
243	Limited evidence for the use of livestock for the conservation management of exotic plant cover. Australian Journal of Botany, 2020, 68, 137.	0.3	1
244	Invasion of an exotic annual forb affects grassâ€feeding termites in a semiâ€arid woodland. Austral Ecology, 2022, 47, 997-1005.	0.7	1
245	Mineral Nutrition of Plants in Australia's Arid Zone. , 2018, , 77-102.		0