Yu Qiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3444696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lonâ€Exchange: A Promising Strategy to Design Liâ€Rich and Liâ€Excess Layered Cathode Materials for Liâ€lon Batteries. Advanced Energy Materials, 2022, 12, 2003972.	19.5	49
2	Efficient diffusion of superdense lithium <i>via</i> atomic channels for dendrite-free lithium–metal batteries. Energy and Environmental Science, 2022, 15, 196-205.	30.8	27
3	Structure design enables stable anionic and cationic redox chemistry in a T2-type Li-excess layered oxide cathode. Science Bulletin, 2022, 67, 381-388.	9.0	13
4	Nonvolatile and Nonflammable Sulfolane-Based Electrolyte Achieving Effective and Safe Operation of the Li–O ₂ Battery in Open O ₂ Environment. Nano Letters, 2022, 22, 815-821.	9.1	16
5	Regulating the Architecture of a Solid Electrolyte Interface on a Li-Metal Anode of a Li–O ₂ Battery by a Dithiobiuret Additive. , 2022, 4, 682-691.		5
6	Long-Life Aqueous Zn–I ₂ Battery Enabled by a Low-Cost Multifunctional Zeolite Membrane Separator. Nano Letters, 2022, 22, 2538-2546.	9.1	65
7	Robust Zn anode enabled by a hydrophilic adhesive coating for long-life zinc-ion hybrid supercapacitors. Chemical Engineering Journal, 2022, 442, 136217.	12.7	13
8	Tailoring the Solvation Sheath of Cations by Constructing Electrode Frontâ€Faces for Rechargeable Batteries. Advanced Materials, 2022, 34, e2201339.	21.0	66
9	Stabilizing Li–O ₂ Batteries with Multifunctional Fluorinated Graphene. Nano Letters, 2022, 22, 4985-4992.	9.1	24
10	Triggering and Stabilizing Oxygen Redox Chemistry in Layered Li[Na _{1/3} Ru _{2/3}]O ₂ Enabled by Stable Li–O–Na Configuration. ACS Energy Letters, 2022, 7, 2349-2356.	17.4	18
11	Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries. Journal of Materials Chemistry A, 2022, 10, 16087-16094.	10.3	24
12	A high-capacity cathode for rechargeable K-metal battery based on reversible superoxide-peroxide conversion. National Science Review, 2021, 8, nwaa287.	9.5	12
13	Stabilizing Anionic Redox Chemistry in a Mnâ€Based Layered Oxide Cathode Constructed by Liâ€Deficient Pristine State. Advanced Materials, 2021, 33, e2004280.	21.0	67
14	Amidinothiourea as a new deposition-regulating additive for dendrite-free lithium metal anodes. Chemical Communications, 2021, 57, 10055-10058.	4.1	9
15	Applications of Metal-organic Frameworks (MOFs) Materials in Lithium-ion Battery/Lithium-metal Battery Electrolytes. Acta Chimica Sinica, 2021, 79, 139.	1.4	10
16	A Safe and Sustainable Lithiumâ€lon–Oxygen Battery based on a Lowâ€Cost Dualâ€Carbon Electrodes Architecture. Advanced Materials, 2021, 33, e2100827.	21.0	14
17	A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nature Energy, 2021, 6, 653-662.	39.5	175
18	Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. Energy Storage Materials, 2021, 38, 1-8.	18.0	46

#	Article	IF	CITATIONS
19	Sustainable Lithiumâ€Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Low ost Molecular Sieve. Angewandte Chemie - International Edition, 2021, 60, 15572-15581.	13.8	43
20	Sustainable Lithiumâ€Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Lowâ€Cost Molecular Sieve. Angewandte Chemie, 2021, 133, 15700-15709.	2.0	2
21	Designing Cation–Solvent Fully Coordinated Electrolyte for Highâ€Energyâ€Density Lithium–Sulfur Full Cell Based On Solid–Solid Conversion. Angewandte Chemie, 2021, 133, 17867-17875.	2.0	11
22	Designing Cation–Solvent Fully Coordinated Electrolyte for Highâ€Energyâ€Density Lithium–Sulfur Full Cell Based On Solid–Solid Conversion. Angewandte Chemie - International Edition, 2021, 60, 17726-17734.	13.8	50
23	Reducing Water Activity by Zeolite Molecular Sieve Membrane for Longâ€Life Rechargeable Zinc Battery. Advanced Materials, 2021, 33, e2102415.	21.0	164
24	Two-dimensional metal–organic framework with perpendicular one-dimensional nano-channel as precise polysulfide sieves for highly efficient lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 4870-4879.	10.3	24
25	Formulating a New Electrolyte: Synergy between Low-Polar and Non-polar Solvents in Tailoring the Solid Electrolyte Interface for the Silicon Anode. ACS Applied Materials & Interfaces, 2021, 13, 55700-55711.	8.0	7
26	Fabricating better metal-organic frameworks separators for Li–S batteries: Pore sizes effects inspired channel modification strategy. Energy Storage Materials, 2020, 25, 164-171.	18.0	83
27	Superior efficient rechargeable lithium–air batteries using a bifunctional biological enzyme catalyst. Energy and Environmental Science, 2020, 13, 144-151.	30.8	13
28	Identifying Anionic Redox Activity within the Related O3- and P2-Type Cathodes for Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 851-857.	8.0	28
29	Elucidating Anionic Redox Chemistry in P3 Layered Cathode for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 38249-38255.	8.0	30
30	A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery. Joule, 2020, 4, 1776-1789.	24.0	146
31	A Metal–Organic Framework as a Multifunctional Ionic Sieve Membrane for Longâ€Life Aqueous Zinc–Iodide Batteries. Advanced Materials, 2020, 32, e2004240.	21.0	222
32	Beyond the concentrated electrolyte: further depleting solvent molecules within a Li ⁺ solvation sheath to stabilize high-energy-density lithium metal batteries. Energy and Environmental Science, 2020, 13, 4122-4131.	30.8	122
33	Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability. Nano-Micro Letters, 2020, 12, 171.	27.0	53
34	A 500 Wh/kg Lithium-Metal Cell Based on Anionic Redox. Joule, 2020, 4, 1445-1458.	24.0	80
35	Constructing a Superâ€Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2020, 59, 9377-9381.	13.8	551
36	Constructing a Super‧aturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angewandte Chemie, 2020, 132, 9463-9467.	2.0	327

#	Article	IF	CITATIONS
37	In Situ Spectroscopic Investigations of Electrochemical Oxygen Reduction and Evolution Reactions in Cyclic Carbonate Electrolyte Solutions. Journal of Physical Chemistry C, 2020, 124, 15781-15792.	3.1	16
38	A Safe Organic Oxygen Battery Built with Liâ€Based Liquid Anode and MOFs Separator. Advanced Energy Materials, 2020, 10, 1903953.	19.5	33
39	Stabilizing Reversible Oxygen Redox Chemistry in Layered Oxides for Sodiumâ€lon Batteries. Advanced Energy Materials, 2020, 10, 1903785.	19.5	87
40	A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy and Environmental Science, 2020, 13, 1197-1204.	30.8	67
41	Unraveling the anionic oxygen loss and related structural evolution within O3-type Na layered oxide cathodes. Journal of Materials Chemistry A, 2019, 7, 20405-20413.	10.3	23
42	H2O self-trapping air cathode of Li–O2 battery enabling low charge potential operating in dry system. Nano Energy, 2019, 64, 103945.	16.0	23
43	Understanding the effect of the concentration of LiNO ₃ salt in Li–O ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 18318-18323.	10.3	16
44	Advanced Hybrid Electrolyte Li-O2 Battery Realized by Dual Superlyophobic Membrane. Joule, 2019, 3, 2986-3001.	24.0	56
45	Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na _{0.66} Li _{0.22} Ti _{0.15} Mn _{0.63} O ₂ . ACS Energy Letters, 2019, 4, 2409-2417.	17.4	112
46	A New Type of Liâ€Rich Rockâ€Salt Oxide Li ₂ Ni _{1/3} Ru _{2/3} O ₃ with Reversible Anionic Redox Chemistry. Advanced Materials, 2019, 31, e1807825.	21.0	90
47	Developing A "Polysulfideâ€Phobic―Strategy to Restrain Shuttle Effect in Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 11900-11904.	2.0	24
48	Developing A "Polysulfideâ€₽hobic―Strategy to Restrain Shuttle Effect in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 11774-11778.	13.8	100
49	Killing two birds with one stone: a Cu ion redox mediator for a non-aqueous Li–O ₂ battery. Journal of Materials Chemistry A, 2019, 7, 17261-17265.	10.3	34
50	Manganeseâ€Based Naâ€Rich Materials Boost Anionic Redox in Highâ€Performance Layered Cathodes for Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1807770.	21.0	113
51	The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. Energy and Environmental Science, 2019, 12, 2327-2344.	30.8	125
52	A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion. Nature Catalysis, 2019, 2, 1035-1044.	34.4	150
53	Conjugated Microporous Polymers with Tunable Electronic Structure for High-Performance Potassium-Ion Batteries. ACS Nano, 2019, 13, 745-754.	14.6	162
54	NonAqueous, Metal-Free, and Hybrid Electrolyte Li-Ion O ₂ Battery with a Single-Ion-Conducting Separator. ACS Applied Materials & Interfaces, 2019, 11, 4908-4914.	8.0	14

#	Article	IF	CITATIONS
55	Recent advances in functional modification of separators in lithium–sulfur batteries. Dalton Transactions, 2018, 47, 6881-6887.	3.3	61
56	Both Cationic and Anionic Co-(de)intercalation into a Metal-Oxide Material. Joule, 2018, 2, 1134-1145.	24.0	107
57	Direct Visualization of the Reversible O ^{2â^'} /O ^{â^'} Redox Process in Liâ€Rich Cathode Materials. Advanced Materials, 2018, 30, e1705197.	21.0	264
58	Reversible anionic redox activity in Na ₃ RuO ₄ cathodes: a prototype Na-rich layered oxide. Energy and Environmental Science, 2018, 11, 299-305.	30.8	126
59	Tailoring Sodium Anodes for Stable Sodium–Oxygen Batteries. Advanced Functional Materials, 2018, 28, 1706374.	14.9	63
60	MOF-Based Separator in an Li–O ₂ Battery: An Effective Strategy to Restrain the Shuttling of Dual Redox Mediators. ACS Energy Letters, 2018, 3, 463-468.	17.4	151
61	Amorphous P ₂ S ₅ /C Composite as High-Performance Anode Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 16-20.	8.0	20
62	Clean Electrocatalysis in a Li ₂ O ₂ Redox-Based Li–O ₂ Battery Built with a Hydrate-Melt Electrolyte. ACS Catalysis, 2018, 8, 1082-1089.	11.2	23
63	A single ion conducting separator and dual mediator-based electrolyte for high-performance lithium–oxygen batteries with non-carbon cathodes. Journal of Materials Chemistry A, 2018, 6, 9816-9822.	10.3	37
64	Porous hybrid aerogels with ultrahigh sulfur loading for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 9032-9040.	10.3	33
65	Li ₂ CO ₃ -free Li–O ₂ /CO ₂ battery with peroxide discharge product. Energy and Environmental Science, 2018, 11, 1211-1217.	30.8	120
66	Solar-driven efficient Li2O2 oxidation in solid-state Li-ion O2 batteries. Energy Storage Materials, 2018, 11, 170-175.	18.0	51
67	Boosting the Cycle Life of Aprotic Li–O ₂ Batteries via a Photoâ€Assisted Hybrid Li ₂ O ₂ ‣cavenging Strategy. Small Methods, 2018, 2, 1700284.	8.6	47
68	An ultra-stable and enhanced reversibility lithium metal anode with a sufficient O2 design for Li-O2 battery. Energy Storage Materials, 2018, 12, 176-182.	18.0	41
69	Minimizing the Abnormal High-Potential Discharge Process Related to Redox Mediators in Lithium–Oxygen Batteries. Journal of Physical Chemistry Letters, 2018, 9, 6761-6766.	4.6	10
70	Highâ€Voltage Liâ€Ion Fullâ€Cells with Ultralong Term Cycle Life at Elevated Temperature. Advanced Energy Materials, 2018, 8, 1802322.	19.5	34
71	High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte. Joule, 2018, 2, 2117-2132.	24.0	227
72	Simultaneously Inhibiting Lithium Dendrites Growth and Polysulfides Shuttle by a Flexible MOFâ€Based Membrane in Li–S Batteries. Advanced Energy Materials, 2018, 8, 1802130.	19.5	223

Υυ Qιαο

#	Article	IF	CITATIONS
73	A Multifunctional Sillyâ€Putty Nanocomposite Spontaneously Repairs Cathode Composite for Advanced Liâ^'S Batteries. Advanced Functional Materials, 2018, 28, 1804777.	14.9	52
74	A Hybrid Electrolytes Design for Capacityâ€Equivalent Dualâ€Graphite Battery with Superior Longâ€Term Cycle Life. Advanced Energy Materials, 2018, 8, 1801120.	19.5	50
75	A phase-transition-free cathode for sodium-ion batteries with ultralong cycle life. Nano Energy, 2018, 52, 88-94.	16.0	58
76	An ultrafast rechargeable lithium metal battery. Journal of Materials Chemistry A, 2018, 6, 15517-15522.	10.3	43
77	A Highâ€Crystalline NaV _{1.25} Ti _{0.75} O ₄ Anode for Wideâ€Temperature Sodiumâ€Ion Battery. Advanced Energy Materials, 2018, 8, 1801162.	19.5	41
78	Boosting the Cycle Life of Li–O ₂ Batteries at Elevated Temperature by Employing a Hybrid Polymer–Ceramic Solid Electrolyte. ACS Energy Letters, 2017, 2, 1378-1384.	17.4	71
79	A reversible lithium–CO ₂ battery with Ru nanoparticles as a cathode catalyst. Energy and Environmental Science, 2017, 10, 972-978.	30.8	285
80	From O ₂ ^{â^'} to HO ₂ ^{â^'} : Reducing Byâ€Products and Overpotential in Liâ€O ₂ Batteries by Water Addition. Angewandte Chemie - International Edition, 2017, 56, 4960-4964.	13.8	133
81	From O ₂ ^{â^'} to HO ₂ ^{â^'} : Reducing Byâ€Products and Overpotential in Liâ€O ₂ Batteries by Water Addition. Angewandte Chemie, 2017, 129, 5042-5046.	2.0	31
82	Unraveling the Complex Role of Iodide Additives in Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 1869-1878.	17.4	102
83	Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage. Joule, 2017, 1, 359-370.	24.0	325
84	A Superâ€Hydrophobic Quasiâ€Solid Electrolyte for Liâ€O ₂ Battery with Improved Safety and Cycle Life in Humid Atmosphere. Advanced Energy Materials, 2017, 7, 1601759.	19.5	128
85	Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes. Nature Communications, 2017, 8, 15607.	12.8	53
86	Spectroscopic Investigation for Oxygen Reduction and Evolution Reactions on Carbon Electrodes in Li–O ₂ Battery. Journal of Physical Chemistry C, 2016, 120, 8033-8047.	3.1	42
87	Spectroscopic Investigation for Oxygen Reduction and Evolution Reactions with Tetrathiafulvalene as a Redox Mediator in Li–O ₂ Battery. Journal of Physical Chemistry C, 2016, 120, 15830-15845.	3.1	75
88	Synthesis and electrochemical properties of porous double-shelled Mn2O3 hollow microspheres as a superior anode material for lithium ion batteries. Electrochimica Acta, 2014, 132, 323-331.	5.2	39
89	Synthesis and electrochemical properties of high performance yolk-structured LiMn ₂ O ₄ microspheres for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 860-867.	10.3	32
90	Electrostatic spray deposition of porous Fe2V4O13 films as electrodes for Li-ion batteries. Journal of Alloys and Compounds, 2012, 520, 77-82.	5.5	26

#	Article	IF	CITATIONS
91	Facile synthesis of micrometer Li1.05Mn1.95O4 and its low temperature performance for high power lithium ion batteries. Electrochimica Acta, 2012, 81, 191-196.	5.2	18
92	A facile route to synthesize nano-MnO/C composites and their application in lithium ion batteries. Chemical Engineering Journal, 2012, 192, 226-231.	12.7	53
93	Three-dimensional porous Fe0.1V2O5.15 thin film as a cathode material for lithium ion batteries. Electrochimica Acta, 2012, 64, 81-86.	5.2	45