Célia Aveleira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3444515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skin senescence: mechanisms and impact on whole-body aging. Trends in Molecular Medicine, 2022, 28, 97-109.	6.7	69
2	PI3K/AKT/MTOR and ERK1/2-MAPK signaling pathways are involved in autophagy stimulation induced by caloric restriction or caloric restriction mimetics in cortical neurons. Aging, 2021, 13, 7872-7882.	3.1	15
3	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /	Overlock 1	0 Tf 50 662 1
4	Neuropeptide Y Enhances Progerin Clearance and Ameliorates the Senescent Phenotype of Human Hutchinson-Gilford Progeria Syndrome Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1073-1078.	3.6	14
5	NEUROPEPTIDE Y RESCUES AGING PHENOTYPE OF HUMAN HUTCHINSON-GILFORD PROGERIA SYNDROME FIBROBLASTS. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR11-1.	0.0	0
6	Neuropeptide Y stimulates autophagy in hypothalamic neurons. European Neuropsychopharmacology, 2017, 27, S529.	0.7	0
7	Elevated Glucose and Interleukin-1 <i>l²</i> Differentially Affect Retinal Microglial Cell Proliferation. Mediators of Inflammation, 2017, 2017, 1-11.	3.0	29
8	Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation. Aging, 2016, 8, 1470-1484.	3.1	50
9	The pathophysiology of defective proteostasis in the hypothalamus — from obesity to ageing. Nature Reviews Endocrinology, 2016, 12, 723-733.	9.6	74
10	Neuropeptide Y 1 and Y 5 receptors activation stimulate autophagic flux in mouse hypothalamic neurons. Neuropeptides, 2016, 55, 13.	2.2	0
11	Impaired adrenal medullary function in a mouse model of depression induced by unpredictable chronic stress. European Neuropsychopharmacology, 2015, 25, 1753-1766.	0.7	18
12	NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?. Autophagy, 2015, 11, 1431-1433.	9.1	20
13	Long-term exposure to high glucose increases the content of several exocytotic proteins and of vesicular GABA transporter in cultured retinal neural cells. Neuroscience Letters, 2015, 602, 56-61.	2.1	17
14	Neuropeptide Y stimulates autophagy in hypothalamic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1642-E1651.	7.1	60
15	Fluoxetine Induces Proliferation and Inhibits Differentiation of Hypothalamic Neuroprogenitor Cells In Vitro. PLoS ONE, 2014, 9, e88917.	2.5	11
16	Chronic Unpredictable Stress Induces Catecholaminergic System Changes in Mouse Adrenal Gland. , 2014, , 205.		0
17	Alterations in phospholipidomic profile in the brain of mouse model of depression induced by chronic unpredictable stress. Neuroscience, 2014, 273, 1-11.	2.3	58
18	Beclin 1 mitigates motor and neuropathological deficits in genetic mouse models of Machado–Joseph disease. Brain, 2013, 136, 2173-2188.	7.6	86

CéLIA AVELEIRA

#	Article	IF	CITATIONS
19	Neuropeptide Y Receptors Y ₁ and Y ₂ are Present in Neurons and Glial Cells in Rat Retinal Cells in Culture. , 2013, 54, 429.		27
20	Alteration in brain phospholipid profile after chronic stress: a lipidomic study. Free Radical Biology and Medicine, 2012, 53, S180-S181.	2.9	0
21	Heme Oxygenase-1 Protects Retinal Endothelial Cells against High Glucose- and Oxidative/Nitrosative Stress-Induced Toxicity. PLoS ONE, 2012, 7, e42428.	2.5	83
22	Proliferative Hypothalamic Neurospheres Express NPY, AGRP, POMC, CART and Orexin-A and Differentiate to Functional Neurons. PLoS ONE, 2011, 6, e19745.	2.5	31
23	High glucose and interleukin-1β downregulate interleukin-1 type I receptor (IL-1RI) in retinal endothelial cells by enhancing its degradation by a lysosome-dependent mechanism. Cytokine, 2010, 49, 279-286.	3.2	12
24	TNF-α Signals Through PKCζ/NF-κB to Alter the Tight Junction Complex and Increase Retinal Endothelial Cell Permeability. Diabetes, 2010, 59, 2872-2882.	0.6	343
25	High glucose and oxidative/nitrosative stress conditions induce apoptosis in retinal endothelial cells by a caspase-independent pathway. Experimental Eye Research, 2009, 88, 983-991.	2.6	51
26	Müller Cells Do Not Influence Leukocyte Adhesion to Retinal Endothelial Cells. Ocular Immunology and Inflammation, 2008, 16, 173-179.	1.8	2
27	NPY in rat retina is present in neurons, in endothelial cells and also in microglial and Müller cells. Neurochemistry International, 2007, 50, 757-763.	3.8	30