Baodong Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3444480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of liver GSD IX γ2 pathophysiology in a novel Phkg2/ mouse model. Molecular Genetics and Metabolism, 2021, 133, 269-276.	1.1	4
2	A Novel Gene Therapy Approach for GSD III Using an AAV Vector Encoding a Bacterial Glycogen Debranching Enzyme. Molecular Therapy - Methods and Clinical Development, 2020, 18, 240-249.	4.1	11
3	Transcriptomic and Proteomic Analysis of Clear Cell Foci (CCF) in the Human Non-Cirrhotic Liver Identifies Several Differentially Expressed Genes and Proteins with Functions in Cancer Cell Biology and Glycogen Metabolism. Molecules, 2020, 25, 4141.	3.8	3
4	Gene therapy for glycogen storage diseases. Human Molecular Genetics, 2019, 28, R31-R41.	2.9	40
5	Intravenous Injection of an AAV-PHP.B Vector Encoding Human Acid α-Glucosidase Rescues Both Muscle and CNS Defects in Murine Pompe Disease. Molecular Therapy - Methods and Clinical Development, 2019, 12, 233-245.	4.1	38
6	An emerging phenotype of central nervous system involvement in Pompe disease: from bench to bedside and beyond. Annals of Translational Medicine, 2019, 7, 289-289.	1.7	42
7	Hepatic Manifestations in Glycogen Storage Disease Type III. Current Pathobiology Reports, 2018, 6, 233-240.	3.4	1
8	Therapeutic Benefit of Autophagy Modulation in Pompe Disease. Molecular Therapy, 2018, 26, 1783-1796.	8.2	46
9	Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease. Journal of Molecular Medicine, 2017, 95, 513-521.	3.9	23
10	A pilot study on using rapamycin-carrying synthetic vaccine particles (SVP) in conjunction with enzyme replacement therapy to induce immune tolerance in Pompe disease. Molecular Genetics and Metabolism Reports, 2017, 13, 18-22.	1.1	24
11	Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy. Human Gene Therapy, 2017, 28, 286-294.	2.7	14
12	Alglucosidase alfa enzyme replacement therapy as a therapeutic approach for a patient presenting with a PRKAG2 mutation. Molecular Genetics and Metabolism, 2017, 120, 96-100.	1.1	10
13	Starch Binding Domain-containing Protein 1 Plays a Dominant Role in Glycogen Transport to Lysosomes in Liver. Journal of Biological Chemistry, 2016, 291, 16479-16484.	3.4	38
14	Alglucosidase alfa treatment alleviates liver disease in a mouse model of glycogen storage disease type IV. Molecular Genetics and Metabolism Reports, 2016, 9, 31-33.	1.1	3
15	Natural Progression of Canine Glycogen Storage Disease Type Illa. Comparative Medicine, 2016, 66, 41-51.	1.0	13
16	A Modified Enzymatic Method for Measurement of Glycogen Content in Glycogen Storage Disease Type IV. JIMD Reports, 2015, 30, 89-94.	1.5	4
17	Preclinical Development of New Therapy for Glycogen Storage Diseases. Current Gene Therapy, 2015, 15, 338-347.	2.0	19
18	Non-depleting anti-CD4 monoclonal antibody induces immune tolerance to ERT in a murine model of Pompe disease. Molecular Genetics and Metabolism Reports, 2014, 1, 446-450	1.1	13

BAODONG SUN

#	Article	IF	CITATIONS
19	Correction of glycogen storage disease type III with rapamycin in a canine model. Journal of Molecular Medicine, 2014, 92, 641-650.	3.9	36
20	Stbd1 is highly elevated in skeletal muscle of Pompe disease mice but suppression of its expression does not affect lysosomal glycogen accumulation. Molecular Genetics and Metabolism, 2013, 109, 312-314.	1.1	15
21	Alglucosidase alfa enzyme replacement therapy as a therapeutic approach for glycogen storage disease type III. Molecular Genetics and Metabolism, 2013, 108, 145-147.	1.1	16
22	Adjunctive β2â€agonists reverse neuromuscular involvement in murine Pompe disease. FASEB Journal, 2013, 27, 34-44.	0.5	40
23	Characterization of a canine model of glycogen storage disease type IIIa. DMM Disease Models and Mechanisms, 2012, 5, 804-11.	2.4	34
24	Immunodominant Liver-Specific Expression Suppresses Transgene-Directed Immune Responses in Murine Pompe Disease. Human Gene Therapy, 2012, 23, 460-472.	2.7	72
25	Enhanced efficacy of enzyme replacement therapy in Pompe disease through mannose-6-phosphate receptor expression in skeletal muscle. Molecular Genetics and Metabolism, 2011, 103, 107-112.	1.1	67
26	Immunomodulatory Gene Therapy Prevents Antibody Formation and Lethal Hypersensitivity Reactions in Murine Pompe Disease. Molecular Therapy, 2010, 18, 353-360.	8.2	80
27	Impaired clearance of accumulated lysosomal glycogen in advanced Pompe disease despite highâ€level vectorâ€mediated transgene expression. Journal of Gene Medicine, 2009, 11, 913-920.	2.8	26
28	Activation of glycolysis and apoptosis in glycogen storage disease type Ia. Molecular Genetics and Metabolism, 2009, 97, 267-271.	1.1	18
29	AAV Vector-mediated Reversal of Hypoglycemia in Canine and Murine Glycogen Storage Disease Type Ia. Molecular Therapy, 2008, 16, 665-672.	8.2	85
30	Correction of Multiple Striated Muscles in Murine Pompe Disease Through Adeno-associated Virus–mediated Gene Therapy. Molecular Therapy, 2008, 16, 1366-1371.	8.2	70
31	Enhanced Response to Enzyme Replacement Therapy in Pompe Disease after the Induction of Immune Tolerance. American Journal of Human Genetics, 2007, 81, 1042-1049.	6.2	118
32	Enhanced Efficacy of an AAV Vector Encoding Chimeric, Highly Secreted Acid α-Glucosidase in Glycogen Storage Disease Type II. Molecular Therapy, 2006, 14, 822-830.	8.2	51
33	Evasion of Immune Responses to Introduced Human Acid α-Glucosidase by Liver-Restricted Expression in Glycogen Storage Disease Type II. Molecular Therapy, 2005, 12, 876-884.	8.2	156
34	Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Molecular Therapy, 2005, 11, 889-898.	8.2	95
35	Efficacy of an Adeno-associated Virus 8-Pseudotyped Vector in Glycogen Storage Disease Type II. Molecular Therapy, 2005, 11, 57-65.	8.2	136
36	Packaging of an AAV vector encoding human acid α-glucosidase for gene therapy in glycogen storage disease type II with a modified hybrid adenovirus-AAV vector. Molecular Therapy, 2003, 7, 467-477.	8.2	33