
## John Stelling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/344447/publications.pdf Version: 2024-02-01



IOHN STELLING

| #  | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Analysis and Presentation of Cumulative Antibiograms: A New Consensus Guideline from the Clinical and Laboratory Standards Institute. Clinical Infectious Diseases, 2007, 44, 867-873.                                                                                       | 5.8  | 202       |
| 2  | The Impact of Coronavirus Disease 2019 (COVID-19) on Healthcare-Associated Infections. Clinical Infectious Diseases, 2022, 74, 1748-1754.                                                                                                                                    | 5.8  | 152       |
| 3  | Impact of the COVID-19 pandemic on the surveillance, prevention and control of antimicrobial resistance: a global survey. Journal of Antimicrobial Chemotherapy, 2021, 76, 3045-3058.                                                                                        | 3.0  | 88        |
| 4  | Integrated Multilevel Surveillance of the World's Infecting Microbes and Their Resistance to Antimicrobial Agents. Clinical Microbiology Reviews, 2011, 24, 281-295.                                                                                                         | 13.6 | 72        |
| 5  | Automated Detection of Infectious Disease Outbreaks in Hospitals: A Retrospective Cohort Study. PLoS<br>Medicine, 2010, 7, e1000238.                                                                                                                                         | 8.4  | 65        |
| 6  | Integrating whole-genome sequencing within the National Antimicrobial Resistance Surveillance<br>Program in the Philippines. Nature Communications, 2020, 11, 2719.                                                                                                          | 12.8 | 62        |
| 7  | Laboratory-Based Prospective Surveillance for Community Outbreaks of Shigella spp. in Argentina.<br>PLoS Neglected Tropical Diseases, 2013, 7, e2521.                                                                                                                        | 3.0  | 24        |
| 8  | Protocol for an interdisciplinary cross-sectional study investigating the social, biological and<br>community-level drivers of antimicrobial resistance (AMR): Holistic Approach to Unravel Antibacterial<br>Resistance in East Africa (HATUA). BMJ Open, 2021, 11, e041418. | 1.9  | 24        |
| 9  | A review of available techniques for determination of nano-antimicrobials activity. Toxin Reviews, 2017, 36, 18-32.                                                                                                                                                          | 3.4  | 23        |
| 10 | Why surveillance of antimicrobial resistance needs to be automated and comprehensive. Journal of Global Antimicrobial Resistance, 2019, 17, 8-15.                                                                                                                            | 2.2  | 17        |
| 11 | Using information technology to improve surveillance of antimicrobial resistance in South East Asia.<br>BMJ: British Medical Journal, 2017, 358, j3781.                                                                                                                      | 2.3  | 16        |
| 12 | Statistical detection of geographic clusters of resistant <i>Escherichia coli</i> in a regional network with WHONET and SaTScan. Expert Review of Anti-Infective Therapy, 2016, 14, 1097-1107.                                                                               | 4.4  | 15        |
| 13 | Automating the Generation of Antimicrobial Resistance Surveillance Reports: Proof-of-Concept Study<br>Involving Seven Hospitals in Seven Countries. Journal of Medical Internet Research, 2020, 22, e19762.                                                                  | 4.3  | 14        |
| 14 | Use of WHONET-SaTScan system for simulated real-time detection of antimicrobial resistance clusters<br>in a hospital in Italy, 2012 to 2014. Eurosurveillance, 2017, 22, .                                                                                                   | 7.0  | 14        |
| 15 | Implementation and evaluation of an automated surveillance system to detect hospital outbreak.<br>American Journal of Infection Control, 2017, 45, 1372-1377.                                                                                                                | 2.3  | 12        |
| 16 | Global health and data-driven policies for emergency responses to infectious disease outbreaks. The<br>Lancet Global Health, 2020, 8, e1361-e1363.                                                                                                                           | 6.3  | 12        |
| 17 | Genome Sequencing Identifies Previously Unrecognized <i>Klebsiella pneumoniae</i> Outbreaks in<br>Neonatal Intensive Care Units in the Philippines. Clinical Infectious Diseases, 2021, 73, S316-S324.                                                                       | 5.8  | 12        |
| 18 | Comparison of de-duplication methods used by WHO Global Antimicrobial Resistance Surveillance<br>System (GLASS) and Japan Nosocomial Infections Surveillance (JANIS) in the surveillance of<br>antimicrobial resistance. PLoS ONE, 2020, 15, e0228234.                       | 2.5  | 11        |

JOHN STELLING

0

| #  | ARTICLE                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Automated outbreak detection of hospital-associated pathogens: Value to infection prevention programs. Infection Control and Hospital Epidemiology, 2020, 41, 1016-1021.                 | 1.8 | 6         |
| 20 | Exploring the value of MALDI-TOF MS for the detection of clonal outbreaks of Burkholderia contaminans. Journal of Microbiological Methods, 2021, 181, 106130.                            | 1.6 | 6         |
| 21 | Genomic surveillance of methicillin-resistant Staphylococcus aureus in the Philippines, 2013–2014.<br>Western Pacific Surveillance and Response Journal: WPSAR, 2021, 12, 6-16.          | 0.6 | 5         |
| 22 | Surveillance of multi-drug resistance phenotypes in Staphylococcus aureus in Japan and correlation with whole-genome sequence findings. Journal of Hospital Infection, 2022, 123, 34-42. | 2.9 | 5         |
| 23 | 171. The Impact of COVID-19 on Healthcare-Associated Infections. Open Forum Infectious Diseases, 2021, 8, S102-S103.                                                                     | 0.9 | 4         |
| 24 | Surveillance of antimicrobial resistance and evolving microbial populations in Vermont: 2011-2018.<br>Expert Review of Anti-Infective Therapy, 2020, 18, 1055-1062.                      | 4.4 | 3         |
| 25 | Staphylococcus aureus antimicrobial susceptibility trends and cluster detection in Vermont: 2012-2018. Expert Review of Anti-Infective Therapy, 2021, 19, 777-785.                       | 4.4 | 3         |
| 26 | Genomic surveillance of Pseudomonas aeruginosa in the Philippines, 2013–2014. Western Pacific<br>Surveillance and Response Journal: WPSAR, 2021, 12, 4-18.                               | 0.6 | 3         |
| 27 | Biochemical Phenotypes to Discriminate Microbial Subpopulations and Improve Outbreak Detection.<br>PLoS ONE, 2013, 8, e84313.                                                            | 2.5 | 1         |
| 28 | Genomic surveillance of Acinetobacter baumannii in the Philippines, 2013–2014. Western Pacific<br>Surveillance and Response Journal: WPSAR, 2021, 12, 46-60.                             | 0.6 | 1         |
| 29 | Automated detection of hospital outbreaks of multi-drug resistant pathogens in one Italian region.<br>Expert Review of Anti-Infective Therapy, 2022, 20, 1233-1241.                      | 4.4 | 1         |
| 30 | Clinical Usefulness of Multi-facility Microbiology Laboratory Database Analysis by WHONET. Journal of General and Family Medicine, 2015, 16, 138-142.                                    | 0.8 | 0         |
| 31 | Title is missing!. , 2020, 15, e0228234.                                                                                                                                                 |     | 0         |
| 32 | Title is missing!. , 2020, 15, e0228234.                                                                                                                                                 |     | 0         |
| 33 | Title is missing!. , 2020, 15, e0228234.                                                                                                                                                 |     | 0         |
|    |                                                                                                                                                                                          |     |           |

34 Title is missing!. , 2020, 15, e0228234.