List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/344394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic interaction of coral sand-pile-superstructure during earthquakes: 3D numerical simulations. Marine Georesources and Geotechnology, 2023, 41, 774-790.	2.1	2
2	Shaking Table Tests on Seismic Responses of Pile-soil-superstructure in Coral Sand. Journal of Earthquake Engineering, 2022, 26, 3461-3487.	2.5	16
3	Seismic response of pile groups improved with deep cement mixing columns in liquefiable sand: shaking table tests. Canadian Geotechnical Journal, 2022, 59, 994-1006.	2.8	8
4	Mechanical characteristics and particle breakage of coral sand under one-dimensional repeated loading. Acta Geotechnica, 2022, 17, 3117-3130.	5.7	15
5	Response of pile groups in layered soil to dynamic lateral loads. Computers and Geotechnics, 2022, 142, 104564.	4.7	10
6	Horizontal vibration of rigid strip footings on poroelastic half-space. Journal of Sound and Vibration, 2022, 522, 116731.	3.9	8
7	A simplified analysis approach for the effect of the installation of adjacent XCC pile on the existing single XCC pile in undrained clay. Acta Geotechnica, 2022, 17, 5499-5519.	5.7	4
8	Response of Inclined Loaded Pile in Layered Foundation Based on Principle of Minimum Potential Energy. International Journal of Geomechanics, 2022, 22, .	2.7	8
9	Transverse seismic response of endâ€bearing pipe piles to Sâ€waves. International Journal for Numerical and Analytical Methods in Geomechanics, 2022, 46, 1919-1940.	3.3	17
10	Vertical dynamic response of a pile embedded in a poroelastic soil layer overlying rigid base. Acta Geotechnica, 2021, 16, 977-983.	5.7	42
11	Horizontal vibration of a rigid strip footing on viscoelastic halfâ€space. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45, 325-335.	3.3	7
12	Geotechnical properties of 3D-printed transparent granular soil. Acta Geotechnica, 2021, 16, 1789-1800.	5.7	9
13	Kinematic response of pipe piles subjected to vertically propagating seismic P-waves. Acta Geotechnica, 2021, 16, 895-909.	5.7	28
14	Study on horizontal bearing characteristics of pile foundations in coral sand. Canadian Geotechnical Journal, 2021, 58, 1928-1942.	2.8	16
15	A continuum-based model on axial pile-head dynamic impedance in inhomogeneous soil. Acta Geotechnica, 2021, 16, 3339-3353.	5.7	35
16	Vertical vibration of piles with square crossâ€section. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45, 2629-2653.	3.3	13
17	Experimental Study on the Negative Skin Friction of the Pile Group Induced by Rising and Lowering the Groundwater Level. Advances in Civil Engineering, 2021, 2021, 1-12.	0.7	0
18	High-frequency interference waves in low strain dynamic testing of X-section concrete piles. Earthquake Engineering and Engineering Vibration, 2021, 20, 877-885.	2.3	2

#	Article	IF	CITATIONS
19	Undrained cylindrical and spherical cavity expansion in elastic–viscoplastic soils. Canadian Geotechnical Journal, 2021, 58, 1543-1557.	2.8	6
20	Model Test on the Soil Arching Effect of Pile-Supported Embankments Using Transparent Soil. Geotechnical Testing Journal, 2021, 44, 20190347.	1.0	1
21	Dynamic analysis of pile groups subjected to horizontal loads considering coupled pile-to-pile interaction. Computers and Geotechnics, 2020, 117, 103276.	4.7	69
22	Detailed amount of particle breakage in nonuniformly graded sands under one-dimensional compression. Canadian Geotechnical Journal, 2020, 57, 1239-1246.	2.8	60
23	Limit lateral resistance of XCC pile group in undrained soil. Acta Geotechnica, 2020, 15, 1673-1683.	5.7	15
24	An Analytical Solution for Wave Propagation in a Pipe Pile with Multiple Defects. Acta Mechanica Solida Sinica, 2020, 33, 251-267.	1.9	7
25	Dynamic analysis of an axially loaded pile embedded in elasticâ€poroelasitc layered soil of finite thickness. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44, 533-549.	3.3	13
26	Vertical vibration of a rigid strip footing on viscoelastic halfâ€space. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44, 1983-1995.	3.3	9
27	Large Deformation Numerical Analysis of Displacement-Controlled Cylindrical Cavity Expansion under Anisotropic Initial Stress. International Journal of Geomechanics, 2020, 20, 04020163.	2.7	2
28	Detailed amount of particle breakage in multi-sized coral sands under impact loading. European Journal of Environmental and Civil Engineering, 2020, , 1-10.	2.1	14
29	A new dynamic interaction factor for the analysis of pile groups subjected to vertical dynamic loads. Acta Geotechnica, 2020, 15, 3545-3558.	5.7	10
30	Experimental study on the pile group-soil vibration induced by railway traffic under the inclined bedrock condition. Acta Geotechnica, 2020, 15, 3613-3620.	5.7	21
31	Comparative Study on Seismic Response of Pile Group Foundation in Coral Sand and Fujian Sand. Journal of Marine Science and Engineering, 2020, 8, 189.	2.6	19
32	A p–y curve model for laterally loaded XCC pile in soft clay. Acta Geotechnica, 2020, 15, 3229-3242.	5.7	14
33	Development of a coupled pile-to-pile interaction model for the dynamic analysis of pile groups subjected to vertical loads. Acta Geotechnica, 2020, 15, 3261-3269.	5.7	15
34	Simplified threeâ€dimensional analysis of horizontally vibrating floating and fixedâ€end pile groups. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43, 2585-2596.	3.3	13
35	Development of a threeâ€dimensional soil model for the dynamic analysis of endâ€bearing pile groups subjected to vertical loads. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43, 1784-1793.	3.3	17
36	Horizontal vibration of a cylindrical rigid foundation embedded in poroelastic half-space. Computers and Geotechnics, 2019, 106, 296-303.	4.7	13

#	Article	IF	CITATIONS
37	Model tests on XCC-piled embankment under dynamic train load of high-speed railways. Earthquake Engineering and Engineering Vibration, 2018, 17, 581-594.	2.3	15
38	Horizontal dynamic response of a large-diameter pipe pile considering the second-order effect of axial force. Earthquake Engineering and Engineering Vibration, 2018, 17, 567-579.	2.3	8
39	Theoretical model for the improved PCC pile using expansive concrete. Science China Technological Sciences, 2017, 60, 772-791.	4.0	3
40	Resistance of Inner Soil to the Horizontal Vibration of Pipe Piles. Journal of Engineering Mechanics - ASCE, 2017, 143, 06017015.	2.9	7
41	Experimental Study on the Behavior of X-Section Pile Subjected to Cyclic Axial Load in Sand. Shock and Vibration, 2017, 2017, 1-9.	0.6	4
42	Three-Dimensional Effects in Low-Strain Integrity Testing of Large Diameter Pipe Piles. Journal of Engineering Mechanics - ASCE, 2016, 142, .	2.9	26
43	Torsional vibration of a pipe pile in transversely isotropic saturated soil. Earthquake Engineering and Engineering Vibration, 2016, 15, 509-517.	2.3	16
44	Comparative study of Y-shaped and circular floating piles in consolidating clay. Canadian Geotechnical Journal, 2016, 53, 1483-1494.	2.8	18
45	Lateral dynamic response of a pipe pile in saturated soil layer. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40, 159-184.	3.3	41
46	A revised solution for the horizontal vibration of an endâ€bearing pile in viscoelastic soil. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40, 1890-1900.	3.3	18
47	Three-dimensional effects in low-strain integrity testing of piles: analytical solution. Canadian Geotechnical Journal, 2016, 53, 225-235.	2.8	56
48	Vertical Vibration of a Pipe Pile in Viscoelastic Soil Considering the Three-Dimensional Wave Effect of Soil. International Journal of Geomechanics, 2016, 16, .	2.7	38
49	Influence of Particle Breakage on Critical State Line of Rockfill Material. International Journal of Geomechanics, 2016, 16, .	2.7	177
50	Time-domain solution for transient dynamic response of a large-diameter thin-walled pipe pile. Earthquake Engineering and Engineering Vibration, 2015, 14, 239-251.	2.3	19
51	Vertical vibration of an elastic pile embedded in poroelastic soil. Soil Dynamics and Earthquake Engineering, 2015, 77, 177-181.	3.8	32
52	Vertical response of a thin-walled pipe pile embedded in viscoelastic soil to a transient point load with application to low-strain integrity testing. Computers and Geotechnics, 2015, 70, 50-59.	4.7	31
53	Grouted gravel column-supported highway embankment over soft clay: case study. Canadian Geotechnical Journal, 2015, 52, 1725-1733.	2.8	39
54	Vertical impedance of an endâ€bearing pile in viscoelastic soil. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39, 676-684.	3.3	38

#	Article	IF	CITATIONS
55	Torsional dynamic response of a largeâ€diameter pipe pile in viscoelastic saturated soil. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38, 1724-1743.	3.3	28
56	A modified analytical solution of soil stress distribution for XCC pile foundations. Acta Geotechnica, 2014, 9, 529-546.	5.7	30
57	Vertical dynamic response of a pipe pile in saturated soil layer. Computers and Geotechnics, 2014, 61, 57-66.	4.7	46
58	Horizontal Vibration of a Large-Diameter Pipe Pile in Viscoelastic Soil. Mathematical Problems in Engineering, 2013, 2013, 1-13.	1.1	8
59	Effects of the Tip Location on Single Piles Subjected to Surcharge and Axial Loads. Scientific World Journal, The, 2013, 2013, 1-12.	2.1	9
60	Field Tests on Bearing Characteristics of X-Section Pile Composite Foundation. Journal of Performance of Constructed Facilities, 2012, 26, 180-189.	2.0	57
61	Wave Propagation in a Pipe Pile for Low-Strain Integrity Testing. Journal of Engineering Mechanics - ASCE, 2011, 137, 598-609.	2.9	74
62	High-frequency interference in low strain integrity testing of large-diameter pipe piles. Science China Technological Sciences, 2011, 54, 420-430.	4.0	39
63	Propagation characteristics of transient waves in low-strain integrity testing on cast-in-situ concrete thin-wall pipe piles. Frontiers of Architecture and Civil Engineering in China, 2009, 3, 180-186.	0.4	1
64	A lateral soil resistance model for XCC pile in soft clay considering the effect of the geometry of cross section. Acta Geotechnica, 0, , 1.	5.7	3