
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3443563/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Highly accurate solutions for space–time fractional Schrödinger equations with non-smooth continuous solution using the hybrid clique functions. Mathematical Sciences, 2023, 17, 31-42.                                | 1.7 | 7         |
| 2  | Orthonormal piecewise Bernoulli functions: Application for optimal control problems generated<br>using fractional integro-differential equations. JVC/Journal of Vibration and Control, 2023, 29,<br>1164-1175.         | 2.6 | 9         |
| 3  | An approach to solve fractional optimal control problems via fractional-order Boubaker wavelets.<br>JVC/Journal of Vibration and Control, 2023, 29, 1806-1819.                                                          | 2.6 | 6         |
| 4  | Solution of optimal control problems governed by volterra integral and fractional integro-differential equations. JVC/Journal of Vibration and Control, 2023, 29, 3796-3808.                                            | 2.6 | 6         |
| 5  | Least squares support vector regression for solving Volterra integral equations. Engineering With Computers, 2022, 38, 789-796.                                                                                         | 6.1 | 7         |
| 6  | Fractional-Lucas optimization method for evaluating the approximate solution of the multi-dimensional fractional differential equations. Engineering With Computers, 2022, 38, 481-495.                                 | 6.1 | 7         |
| 7  | Orthonormal Bernoulli polynomials for space–time fractal-fractional modified<br>Benjamin–Bona–Mahony type equations. Engineering With Computers, 2022, 38, 3483-3496.                                                   | 6.1 | 5         |
| 8  | A new class of orthonormal basis functions: application for fractional optimal control problems.<br>International Journal of Systems Science, 2022, 53, 240-252.                                                        | 5.5 | 9         |
| 9  | Jacobi spectral method for variable-order fractional Benney–Lin equation arising in falling film problems. Journal of Computational and Applied Mathematics, 2022, 402, 113813.                                         | 2.0 | 6         |
| 10 | Extended Chebyshev cardinal wavelets for nonlinear fractional delay optimal control problems.<br>International Journal of Systems Science, 2022, 53, 1048-1067.                                                         | 5.5 | 7         |
| 11 | Fractionalâ€order Chebyshev wavelet method for variableâ€order fractional optimal control problems.<br>Mathematical Methods in the Applied Sciences, 2022, 45, 827.                                                     | 2.3 | 6         |
| 12 | Fractional-order generalized Taylor wavelet method for systems of nonlinear fractional differential equations with application to human respiratory syncytial virus infection. Soft Computing, 2022, 26, 165-173.       | 3.6 | 6         |
| 13 | Numerical solutions for distributed-order fractional optimal control problems by using generalized fractional-order Chebyshev wavelets. Nonlinear Dynamics, 2022, 108, 265-277.                                         | 5.2 | 13        |
| 14 | A SPECTRAL APPROACH FOR TIME-FRACTIONAL DIFFUSION AND SUBDIFFUSION EQUATIONS IN A LARGE INTERVAL. Mathematical Modelling and Analysis, 2022, 27, 19-40.                                                                 | 1.5 | 0         |
| 15 | Thirdâ€kind Chebyshev cardinal functions for variableâ€order time fractional RLWâ€Burgers equation.<br>Mathematical Methods in the Applied Sciences, 2022, 45, 5670-5681.                                               | 2.3 | 4         |
| 16 | Numerical solutions for distributed-order fractional optimal control problems by using<br>Müntz–Legendre wavelets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering<br>Sciences, 2022, 478, . | 2.1 | 2         |
| 17 | Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative. International Journal of Systems Science, 2022, 53, 2694-2708.                   | 5.5 | 6         |
| 18 | Numerical solutions for fractional optimal control problems by using generalised fractional-order<br>Chebyshev wavelets. International Journal of Systems Science, 2022, 53, 778-792.                                   | 5.5 | 3         |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations. Engineering With Computers, 2021, 37, 1791.                                                        | 6.1 | 37        |
| 20 | Combination of Lucas wavelets with Legendre–Gauss quadrature for fractional Fredholm–Volterra<br>integro-differential equations. Journal of Computational and Applied Mathematics, 2021, 382, 113070.                     | 2.0 | 29        |
| 21 | Modified wavelet method for solving fractional variational problems. JVC/Journal of Vibration and Control, 2021, 27, 582-596.                                                                                             | 2.6 | 10        |
| 22 | A novel direct method based on the Lucas multiwavelet functions for variableâ€order fractional<br>reactionâ€diffusion and subdiffusion equations. Numerical Linear Algebra With Applications, 2021, 28,<br>e2346.         | 1.6 | 17        |
| 23 | A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 2021, 95, 105597.          | 3.3 | 33        |
| 24 | A fractionalâ€order generalized Taylor wavelet method for nonlinear fractional delay and nonlinear<br>fractional pantograph differential equations. Mathematical Methods in the Applied Sciences, 2021, 44,<br>4156-4175. | 2.3 | 15        |
| 25 | A numerical method based on fractional-order generalized Taylor wavelets for solving<br>distributed-order fractional partial differential equations. Applied Numerical Mathematics, 2021, 160,<br>349-367.                | 2.1 | 21        |
| 26 | Taylor wavelet method for fractional delay differential equations. Engineering With Computers, 2021, 37, 231-240.                                                                                                         | 6.1 | 29        |
| 27 | A numerical method for solving variableâ€order fractional diffusion equations using fractionalâ€order<br><scp>Taylor</scp> wavelets. Numerical Methods for Partial Differential Equations, 2021, 37, 2668-2686.           | 3.6 | 1         |
| 28 | An improved numerical technique for distributedâ€order timeâ€fractional diffusion equations. Numerical<br>Methods for Partial Differential Equations, 2021, 37, 2490-2510.                                                | 3.6 | 2         |
| 29 | Hybrid Vessel Extraction Method Based onÂTight-Frame and EM Algorithms by Using 2D Dual Tree<br>Complex Wavelet. Informatica, 2021, , 1-22.                                                                               | 2.7 | 1         |
| 30 | Study of B-spline collocation method for solving fractional optimal control problems. Transactions of the Institute of Measurement and Control, 2021, 43, 2425-2437.                                                      | 1.7 | 3         |
| 31 | Orthonormal shifted discrete Chebyshev polynomials: Application for a fractal-fractional version of the coupled SchrĶdinger-Boussinesq system. Chaos, Solitons and Fractals, 2021, 143, 110570.                           | 5.1 | 9         |
| 32 | Numerical investigation of variableâ€order fractional Benjamin–Bona–Mahony–Burgers equation using<br>a pseudoâ€spectral method. Mathematical Methods in the Applied Sciences, 2021, 44, 8669-8683.                        | 2.3 | 5         |
| 33 | Fractional-order generalized Legendre wavelets and their applications to fractional Riccati<br>differential equations. International Journal of Nonlinear Sciences and Numerical Simulation, 2021, .                      | 1.0 | 1         |
| 34 | Vieta-Lucas polynomials for the coupled nonlinear variable-order fractional Ginzburg-Landau equations. Applied Numerical Mathematics, 2021, 165, 442-458.                                                                 | 2.1 | 11        |
| 35 | Piecewise Chebyshev cardinal functions: Application for constrained fractional optimal control problems. Chaos, Solitons and Fractals, 2021, 150, 111118.                                                                 | 5.1 | 21        |
| 36 | Legendre wavelet method for fractional delay differential equations. Applied Numerical Mathematics, 2021, 168, 127-142.                                                                                                   | 2.1 | 20        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fractional-order Boubaker wavelets method for solving fractional Riccati differential equations.<br>Applied Numerical Mathematics, 2021, 168, 221-234.                                                                              | 2.1 | 14        |
| 38 | A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative. Chaos, Solitons and Fractals, 2021, 152, 111465.                                                                       | 5.1 | 14        |
| 39 | Numerical Technique for Solving Fractional Generalized Pantograph-Delay Differential Equations by<br>Using Fractional-Order Hybrid Bessel Functions. International Journal of Applied and Computational<br>Mathematics, 2020, 6, 1. | 1.6 | 12        |
| 40 | A numerical method for fractional pantograph differential equations based on Taylor wavelets.<br>Transactions of the Institute of Measurement and Control, 2020, 42, 1334-1344.                                                     | 1.7 | 27        |
| 41 | Application of fractional Gegenbauer functions in variable-order fractional delay-type equations with non-singular kernel derivatives. Chaos, Solitons and Fractals, 2020, 140, 110111.                                             | 5.1 | 10        |
| 42 | An effective method for solving nonlinear fractional differential equations. Engineering With Computers, 2020, , 1.                                                                                                                 | 6.1 | 4         |
| 43 | The novel operational matrices based on 2D-Genocchi polynomials: solving a general class of variable-order fractional partial integro-differential equations. Computational and Applied Mathematics, 2020, 39, 1.                   | 2.2 | 8         |
| 44 | Numerical Simulation of Flow over Non-Linearly Stretching Sheet Considering Chemical Reaction and Magnetic Field. Mathematics, 2020, 8, 1496.                                                                                       | 2.2 | 1         |
| 45 | Fractional-Order Genocchi–Petrov–Galerkin Method for Solving Time–Space Fractional<br>Fokker–Planck Equations Arising from the Physical Phenomenon. International Journal of Applied and<br>Computational Mathematics, 2020, 6, 1.  | 1.6 | 7         |
| 46 | Derivative-orthogonal wavelets for discretizing constrained optimal control problems.<br>International Journal of Systems Science, 2020, 51, 786-810.                                                                               | 5.5 | 2         |
| 47 | Fractional-order Bessel wavelet functions for solving variable order fractional optimal control problems with estimation error. International Journal of Systems Science, 2020, 51, 1032-1052.                                      | 5.5 | 30        |
| 48 | Computational method for generalized fractional Benjamin–Bona–Mahony–Burgers equations<br>arising from the propagation of water waves. Sadhana - Academy Proceedings in Engineering Sciences,<br>2020, 45, 1.                       | 1.3 | 5         |
| 49 | NUMERICAL SOLUTION OF VARIABLE-ORDER TIME FRACTIONAL WEAKLY SINGULAR PARTIAL<br>INTEGRO-DIFFERENTIAL EQUATIONS WITH ERROR ESTIMATION. Mathematical Modelling and Analysis, 2020,<br>25, 680-701.                                    | 1.5 | 12        |
| 50 | Approximation of solutions of polynomial partial differential equations in two independent variables.<br>Journal of Computational and Applied Mathematics, 2019, 346, 205-223.                                                      | 2.0 | 3         |
| 51 | Application of the modified operational matrices in multiterm variableâ€order timeâ€fractional partial differential equations. Mathematical Methods in the Applied Sciences, 2019, 42, 7296-7313.                                   | 2.3 | 28        |
| 52 | On the applicability of Genocchi wavelet method for different kinds of fractionalâ€order differential<br>equations with delay. Numerical Linear Algebra With Applications, 2019, 26, e2259.                                         | 1.6 | 27        |
| 53 | Approximate solutions for the Bagley-Torvik fractional equation with boundary conditions using the Polynomial Least Squares Method. ITM Web of Conferences, 2019, 29, 01011.                                                        | 0.5 | 3         |
| 54 | Hybrid approximations for fractional calculus. ITM Web of Conferences, 2019, 29, 01001.                                                                                                                                             | 0.5 | 1         |

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Bernoulli wavelets operational matrix of integration and its applications for the solution of linear and nonlinear problems in calculus of variations. Applied Mathematics and Computation, 2019, 351, 83-98.                                           | 2.2  | 23        |
| 56 | Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Applied Mathematical Modelling, 2019, 70, 350-364.                                                                                               | 4.2  | 76        |
| 57 | A numerical technique for solving various kinds of fractional partial differential equations via<br>Genocchi hybrid functions. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie<br>A: Matematicas, 2019, 113, 3297-3321.        | 1.2  | 19        |
| 58 | Hybrid functions for numerical solution of fractional Fredholmâ€Volterra functional<br>integroâ€differential equations with proportional delays. International Journal of Numerical<br>Modelling: Electronic Networks, Devices and Fields, 2019, 32, e2606. | 1.9  | 11        |
| 59 | Fractional-order Bessel functions with various applications. , 2019, 64, 637-662.                                                                                                                                                                           |      | 15        |
| 60 | The Taylor wavelets method for solving the initial and boundary value problems of Bratu-type equations. Applied Numerical Mathematics, 2018, 128, 205-216.                                                                                                  | 2.1  | 51        |
| 61 | Combined Shearlet Shrinkage and Total Variation Minimization for Image Denoising. Iranian Journal of<br>Science and Technology, Transaction A: Science, 2018, 42, 31-37.                                                                                    | 1.5  | 4         |
| 62 | An Approximate Method for Solving a Vibration Equation Involving Fractional Derivatives. Springer Proceedings in Physics, 2018, , 13-19.                                                                                                                    | 0.2  | 1         |
| 63 | An approximate method for solving fractional optimal control problems by hybrid functions.<br>JVC/Journal of Vibration and Control, 2018, 24, 1621-1631.                                                                                                    | 2.6  | 44        |
| 64 | Nonlinear Constrained Optimal Control Problems and Cardinal Hermite Interpolant Multiscaling<br>Functions. Asian Journal of Control, 2018, 20, 558-567.                                                                                                     | 3.0  | 9         |
| 65 | An approximate method for solving fractional optimal control problems by the hybrid of blockâ€pulse functions and Taylor polynomials. Optimal Control Applications and Methods, 2018, 39, 873-887.                                                          | 2.1  | 19        |
| 66 | A numerical scheme for problems in fractional calculus. ITM Web of Conferences, 2018, 20, 02001.                                                                                                                                                            | 0.5  | 1         |
| 67 | An Efficient Method for Numerical Solutions of Distributed-Order Fractional Differential Equations.<br>Journal of Computational and Nonlinear Dynamics, 2018, 13, .                                                                                         | 1.2  | 15        |
| 68 | Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations. Applied Mathematics and Computation, 2018, 336, 433-453.                                                                                  | 2.2  | 66        |
| 69 | Numerical solutions of fractional differential equations by using fractional Taylor basis. IEEE/CAA<br>Journal of Automatica Sinica, 2017, 4, 98-106.                                                                                                       | 13.1 | 24        |
| 70 | Solutions of the Blasius and MHD Falkner-Skan boundary-layer equations by modified rational<br>Bernoulli functions. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27,<br>1687-1705.                                             | 2.8  | 8         |
| 71 | Cardinal Hermite interpolant multiscaling functions for solving a parabolic inverse problem. Turkish<br>Journal of Mathematics, 2017, 41, 1009-1026.                                                                                                        | 0.7  | 4         |
| 72 | Analysis of Multi-delay and Piecewise Constant Delay Systems by Hybrid Functions Approximation.<br>Differential Equations and Dynamical Systems, 2016, 24, 1-20.                                                                                            | 1.0  | 34        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Solution of Lane–Emden type equations using rational Bernoulli functions. Mathematical Methods in the Applied Sciences, 2016, 39, 1268-1284.                                                           | 2.3 | 9         |
| 74 | Numerical solution of distributed order fractional differential equations by hybrid functions.<br>Journal of Computational Physics, 2016, 315, 169-181.                                                | 3.8 | 109       |
| 75 | A numerical solution for fractional optimal control problems via Bernoulli polynomials. JVC/Journal of Vibration and Control, 2016, 22, 3889-3903.                                                     | 2.6 | 75        |
| 76 | The Numerical Solution of the Bagley–Torvik Equation With Fractional Taylor Method. Journal of Computational and Nonlinear Dynamics, 2016, 11, .                                                       | 1.2 | 18        |
| 77 | Numerical solution of the fractional Bagley-Torvik equation by using hybrid functions approximation.<br>Mathematical Methods in the Applied Sciences, 2016, 39, 353-365.                               | 2.3 | 43        |
| 78 | Numerical solution of nonlinear fractional integro-differential equations by hybrid functions.<br>Engineering Analysis With Boundary Elements, 2015, 56, 81-89.                                        | 3.7 | 31        |
| 79 | Improvement of Polyester Blanket Thermal Insulator Properties Using Phenolic Aerogel. , 2015, 11, 522-526.                                                                                             |     | 1         |
| 80 | Cellulose Cork/phenolic Aerogel Nanocomposites as a Lightweight Thermal Insulator. , 2015, 11, 527-530.                                                                                                |     | 5         |
| 81 | Sparse representation of system of Fredholm integro-differential equations by using alpert multiwavelets. Computational Mathematics and Mathematical Physics, 2015, 55, 1468-1483.                     | 0.8 | 18        |
| 82 | Hybrid Functions Approach for Variational Problems and Optimal Control of Delay Systems. Studies in Systems, Decision and Control, 2015, , 67-88.                                                      | 1.0 | 1         |
| 83 | Solution of the Nonlinear Mixed Volterra-Fredholm Integral Equations by Hybrid of Block-Pulse<br>Functions and Bernoulli Polynomials. Scientific World Journal, The, 2014, 2014, 1-8.                  | 2.1 | 14        |
| 84 | A COMBINED ADAPTIVE CONTROL PARAMETRIZATION AND HOMOTOPY CONTINUATION TECHNIQUE FOR THE NUMERICAL SOLUTION OF BANG–BANG OPTIMAL CONTROL PROBLEMS. ANZIAM Journal, 2014, 56, 48-65.                     | 0.2 | 6         |
| 85 | Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Applied Mathematical Modelling, 2014, 38, 6038-6051. | 4.2 | 135       |
| 86 | A Taylor series method for the solution of the linear initial–boundary-value problems for partial differential equations. Computers and Mathematics With Applications, 2013, 66, 1329-1343.            | 2.7 | 14        |
| 87 | Hybrid functions approach for optimal control of systems described by integro-differential equations. Applied Mathematical Modelling, 2013, 37, 3355-3368.                                             | 4.2 | 35        |
| 88 | Hybrid Functions for Nonlinear Differential Equations with Applications to Physical Problems.<br>Lecture Notes in Computer Science, 2013, , 86-94.                                                     | 1.3 | 1         |
| 89 | A hybrid functions approach for the Duffing equation. Physica Scripta, 2013, 88, 025002.                                                                                                               | 2.5 | 19        |
| 90 | Optimal Control of Delay Systems by Using a Hybrid Functions Approximation. Journal of Optimization<br>Theory and Applications, 2012, 153, 338-356.                                                    | 1.5 | 72        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Hybrid functions approach for nonlinear constrained optimal control problems. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 1831-1843.                                    | 3.3 | 71        |
| 92  | Numerical iterative method for Volterra equations of the convolution type. Mathematical Methods in the Applied Sciences, 2011, 34, 140-146.                                                         | 2.3 | 2         |
| 93  | A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1186-1194.         | 3.3 | 62        |
| 94  | Rationalized Haar approach for nonlinear constrained optimal control problems. Applied<br>Mathematical Modelling, 2010, 34, 174-183.                                                                | 4.2 | 39        |
| 95  | The Pseudospectral Legendre Method for a Class of Singular Boundary Value Problems Arising in Physiology. JVC/Journal of Vibration and Control, 2010, 16, 3-10.                                     | 2.6 | 3         |
| 96  | Solution of Volterra's population model via blockâ€pulse functions and Lagrangeâ€interpolating polynomials. Mathematical Methods in the Applied Sciences, 2009, 32, 127-134.                        | 2.3 | 41        |
| 97  | Optimization of time delay systems by hybrid functions. Optimization and Engineering, 2009, 10, 363-376.                                                                                            | 2.4 | 11        |
| 98  | Solution of the generalized Emden–Fowler equations by the hybrid functions method. Physica Scripta, 2009, 80, 025001.                                                                               | 2.5 | 12        |
| 99  | Solution of variational problems via hybrid of block-pulse and Lagrange interpolating. IET Control<br>Theory and Applications, 2009, 3, 1363-1369.                                                  | 2.1 | 4         |
| 100 | Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via a collocation method<br>and rationalized Haar functions. Applied Mathematics Letters, 2008, 21, 4-9.                     | 2.7 | 59        |
| 101 | Combined finite difference and spectral methods for the numerical solution of hyperbolic equation with an integral condition. Numerical Methods for Partial Differential Equations, 2008, 24, 1-8.  | 3.6 | 28        |
| 102 | Numerical solution of the oneâ€dimensional heat equation on the bounded intervals using fundamental solutions. Numerical Methods for Partial Differential Equations, 2008, 24, 911-923.             | 3.6 | 1         |
| 103 | Hybrid functions for nonlinear initial-value problems with applications to Lane–Emden type<br>equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5883-5886. | 2.1 | 54        |
| 104 | Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate. Chaos,<br>Solitons and Fractals, 2008, 35, 59-66.                                                      | 5.1 | 29        |
| 105 | Global behavior of the difference equation xn+1=xn-l+11+a0xn+a1xn-1+â<¯+alxn-l+xn-l+1. Chaos, Solitons<br>and Fractals, 2008, 35, 543-549.                                                          | 5.1 | 4         |
| 106 | Analysis of time-varying singular bilinear systems by hybrid functions. International Journal of<br>Systems Science, 2008, 39, 229-235.                                                             | 5.5 | 1         |
| 107 | Solution of optimal control problems with time-delay. , 2008, , .                                                                                                                                   |     | 2         |
| 108 | On The Applications Of Orthogonal Functions In The Mathematical Modeling Of Biological Processes.<br>AIP Conference Proceedings, 2008, , .                                                          | 0.4 | 0         |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Composite spectral functions for solving Volterra's population model. Chaos, Solitons and Fractals, 2007, 34, 588-593.                                                                                 | 5.1 | 21        |
| 110 | Nonclassical pseudospectral method for the solution of brachistochrone problem. Chaos, Solitons and Fractals, 2007, 34, 1622-1628.                                                                     | 5.1 | 13        |
| 111 | Application of the Adomian decomposition method for the Fokker–Planck equation. Mathematical and<br>Computer Modelling, 2007, 45, 639-650.                                                             | 2.0 | 89        |
| 112 | Two-dimensional Legendre Wavelets Method for the Mixed Volterra-Fredholm Integral Equations.<br>JVC/Journal of Vibration and Control, 2007, 13, 1667-1675.                                             | 2.6 | 41        |
| 113 | Numerical solution of the controlled Duffing oscillator by semi-orthogonal spline wavelets. Physica Scripta, 2006, 74, 362-366.                                                                        | 2.5 | 13        |
| 114 | Semiorthogonal spline wavelets approximation for Fredholm integro-differential equations.<br>Mathematical Problems in Engineering, 2006, 2006, 1-12.                                                   | 1.1 | 55        |
| 115 | On the higher order rational recursive sequence. Applied Mathematics and Computation, 2006, 173, 710-723.                                                                                              | 2.2 | 4         |
| 116 | Global stability of a higher order rational recursive sequence. Applied Mathematics and Computation, 2006, 179, 161-174.                                                                               | 2.2 | 6         |
| 117 | Oscillation and asymptotic behavior of a class of higher order nonlinear recursive sequences.<br>Applied Mathematics and Computation, 2006, 179, 175-189.                                              | 2.2 | 1         |
| 118 | Solution of multi-delay systems using hybrid of block-pulse functions and Taylor series. Journal of<br>Sound and Vibration, 2006, 292, 954-963.                                                        | 3.9 | 69        |
| 119 | The numerical solution of third-order boundary value problems using Sinc-collocation method.<br>Communications in Numerical Methods in Engineering, 2006, 23, 681-689.                                 | 1.3 | 21        |
| 120 | Determination of a time-dependent parameter in a one-dimensional quasi-linear parabolic equation with temperature overspecification. International Journal of Computer Mathematics, 2006, 83, 905-913. | 1.8 | 3         |
| 121 | A numerical technique for gradient-type interface in the inverse scattering problems. , 2006, , .                                                                                                      |     | Ο         |
| 122 | Numerical Solution of Linear Time-Varying Differential Equations using the Hybrid of Block-pulse and Rationalized Haar Functions. JVC/Journal of Vibration and Control, 2006, 12, 1081-1092.           | 2.6 | 2         |
| 123 | Sinc-galerkin solution for nonlinear two-point boundary value problems with applications to chemical reactor theory. Mathematical and Computer Modelling, 2005, 42, 1237-1244.                         | 2.0 | 30        |
| 124 | The qualitative behavior of solutions of a nonlinear difference equation. Applied Mathematics and Computation, 2005, 170, 485-502.                                                                     | 2.2 | 11        |
| 125 | Solution of Hallen's integral equation using multiwavelets. Computer Physics Communications, 2005, 168, 187-197.                                                                                       | 7.5 | 35        |
| 126 | Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations. Mathematics and<br>Computers in Simulation, 2005, 70, 1-8.                                                            | 4.4 | 162       |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Solution of nonlinear Volterra-Hammerstein integral equations via single-term Walsh series method.<br>Mathematical Problems in Engineering, 2005, 2005, 547-554.         | 1.1 | 20        |
| 128 | Solution of nonlinear Fredholm-Hammerstein integral equations by using semiorthogonal spline wavelets. Mathematical Problems in Engineering, 2005, 2005, 113-121.        | 1.1 | 31        |
| 129 | On the applications of orthogonal functions in pattern recognition. , 2005, , .                                                                                          |     | 2         |
| 130 | Analysis of Time-delay Systems via Hybrid of Block-pulse Functions and Taylor Series. JVC/Journal of Vibration and Control, 2005, 11, 1455-1468.                         | 2.6 | 47        |
| 131 | Sinc-Collocation Methods for the Solution of Hallen's Integral Equation. Journal of Electromagnetic<br>Waves and Applications, 2005, 19, 245-256.                        | 1.6 | 24        |
| 132 | Hartley series approximations for the parabolic equations. International Journal of Computer<br>Mathematics, 2005, 82, 1149-1156.                                        | 1.8 | 10        |
| 133 | Single-Term Walsh Series Direct Method for the Solution of Nonlinear Problems in the Calculus of Variations. JVC/Journal of Vibration and Control, 2004, 10, 1071-1081.  | 2.6 | 8         |
| 134 | Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials. Journal of the Franklin Institute, 2004, 341, 279-293.                       | 3.4 | 101       |
| 135 | Solution of time-varying delay systems by hybrid functions. Mathematics and Computers in Simulation, 2004, 64, 597-607.                                                  | 4.4 | 43        |
| 136 | Rational Chebyshev tau method for solving Volterra's population model. Applied Mathematics and Computation, 2004, 149, 893-900.                                          | 2.2 | 63        |
| 137 | Single-term Walsh series method for the Volterra integro-differential equations. Engineering<br>Analysis With Boundary Elements, 2004, 28, 1315-1319.                    | 3.7 | 23        |
| 138 | NUMERICAL SOLUTION OF THE CONTROLLED DUFFING OSCILLATOR BY THE INTERPOLATING SCALING FUNCTIONS. Journal of Electromagnetic Waves and Applications, 2004, 18, 691-705.    | 1.6 | 18        |
| 139 | Efficient Numerical Techniques for Solving Pocklington's Integral Equation Using Multiwavelets.<br>Journal of Electromagnetic Waves and Applications, 2004, 18, 247-264. | 1.6 | 1         |
| 140 | Rational Legendre Approximation for Solving some Physical Problems on Semi-Infinite Intervals.<br>Physica Scripta, 2004, 69, 353-357.                                    | 2.5 | 90        |
| 141 | A tau method approach for the diffusion equation with nonlocal boundary conditions. International<br>Journal of Computer Mathematics, 2004, 81, 1427-1432.               | 1.8 | 20        |
| 142 | Rational Chebyshev tau method for solving higher-order ordinary differential equations.<br>International Journal of Computer Mathematics, 2004, 81, 73-80.               | 1.8 | 74        |
| 143 | A discrete bidirectional reflectance model in remote sensing. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 77, 335-343.                            | 2.3 | 1         |
| 144 | Numerical solution of the controlled Duffing oscillator by hybrid functions. Applied Mathematics and Computation, 2003, 140, 179-190.                                    | 2.2 | 15        |

| #   | Article                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Hybrid functions approach for linearly constrained quadratic optimal control problems. Applied<br>Mathematical Modelling, 2003, 27, 471-485.                            | 4.2 | 49        |
| 146 | State Analysis Of Time-Varying Singular Bilinear Systems By Single-Term Walsh Series. International<br>Journal of Computer Mathematics, 2003, 80, 413-418.              | 1.8 | 4         |
| 147 | Solution of time-varying singular nonlinear systems by single-term Walsh series. Mathematical<br>Problems in Engineering, 2003, 2003, 129-136.                          | 1.1 | 13        |
| 148 | A Rationalized Haar Functions Method for Nonlinear Fredholm-hammerstein Integral Equations.<br>International Journal of Computer Mathematics, 2002, 79, 333-343.        | 1.8 | 28        |
| 149 | A Legendre Wavelet Method for the Radiative Transfer Equation in Remote Sensing. Journal of Electromagnetic Waves and Applications, 2002, 16, 1681-1693.                | 1.6 | 0         |
| 150 | Sine-cosine wavelets operational matrix of integration and its applications in the calculus of variations. International Journal of Systems Science, 2002, 33, 805-810. | 5.5 | 31        |
| 151 | Optimal control of singular systems via piecewise linear polynomial functions. Mathematical<br>Methods in the Applied Sciences, 2002, 25, 399-408.                      | 2.3 | 7         |
| 152 | Legendre wavelets method for constrained optimal control problems. Mathematical Methods in the Applied Sciences, 2002, 25, 529-539.                                     | 2.3 | 39        |
| 153 | Tau method approximation for radiative transfer problems in a slab medium. Journal of Quantitative<br>Spectroscopy and Radiative Transfer, 2002, 72, 439-447.           | 2.3 | 11        |
| 154 | Legendre wavelets method for constrained optimal control problems. Mathematical Methods in the Applied Sciences, 2002, 25, 529.                                         | 2.3 | 5         |
| 155 | The Legendre wavelets operational matrix of integration. International Journal of Systems Science, 2001, 32, 495-502.                                                   | 5.5 | 219       |
| 156 | Solution of nonlinear Volterra-Hammerstein integral equations via rationalized Haar functions.<br>Mathematical Problems in Engineering, 2001, 7, 205-219.               | 1.1 | 22        |
| 157 | A hybrid domain analysis for systems with delays in state and control. Mathematical Problems in Engineering, 2001, 7, 337-353.                                          | 1.1 | 12        |
| 158 | Solution of differential equations via rationalized Haar functions. Mathematics and Computers in Simulation, 2001, 56, 235-246.                                         | 4.4 | 17        |
| 159 | Legendre wavelets method for the solution of nonlinear problems in the calculus of variations.<br>Mathematical and Computer Modelling, 2001, 34, 45-54.                 | 2.0 | 60        |
| 160 | A collocation-type method for radiative transfer problems in a slab medium. Microwave and Optical<br>Technology Letters, 2001, 28, 307-311.                             | 1.4 | 0         |
| 161 | An application of rationalized Haar functions for variational problems. Applied Mathematics and Computation, 2001, 122, 353-364.                                        | 2.2 | 24        |
| 162 | Numerical Solution of Radiative Transfer Problems in a Slab Medium by Galerkin-type Approximation<br>Techniques. Physica Scripta, 2001, 64, 97-101.                     | 2.5 | 3         |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Legendre wavelets direct method for variational problems. Mathematics and Computers in Simulation, 2000, 53, 185-192.                                                                               | 4.4 | 123       |
| 164 | Numerical method for the analysis of time-varying singular systems. IET Control Theory and Applications, 2000, 147, 403-406.                                                                        | 1.7 | 2         |
| 165 | Direct method for variational problems via hybrid of block-pulse and chebyshev functions.<br>Mathematical Problems in Engineering, 2000, 6, 85-97.                                                  | 1.1 | 48        |
| 166 | A hybrid analysis direct method in the calculus of variations. International Journal of Computer<br>Mathematics, 2000, 75, 259-269.                                                                 | 1.8 | 35        |
| 167 | A Collocation Method for the Solution of an Inverse Scattering Problem from Gradient-Type<br>Interfaces. Physica Scripta, 2000, 61, 468-471.                                                        | 2.5 | 3         |
| 168 | Reconstruction of Permittivity Profiles Through a Transformation of the Differential Equation for the Reflection Coefficient. Journal of Electromagnetic Waves and Applications, 1999, 13, 757-765. | 1.6 | 2         |
| 169 | A pseudospectral technique for the discrete reconstruction of the three-dimensional<br>equivalent-current density. IEEE Transactions on Microwave Theory and Techniques, 1999, 47, 802-805.         | 4.6 | 9         |
| 170 | Solution of the matrix Riccati equation for the linear quadratic control problems. Mathematical and<br>Computer Modelling, 1998, 27, 51-55.                                                         | 2.0 | 53        |
| 171 | A numerical solution to the Gel'fand-Levitan-Marchenko equation. Applied Mathematics and Computation, 1998, 89, 31-39.                                                                              | 2.2 | 8         |
| 172 | On the solution of the covariance matrix differential equation for singular systems. International<br>Journal of Computer Mathematics, 1998, 68, 337-343.                                           | 1.8 | 8         |
| 173 | On the Approximation To the Permittivity Profile of an Inhomogeneous Dielectric Slab. Journal of Electromagnetic Waves and Applications, 1998, 12, 713-722.                                         | 1.6 | 5         |
| 174 | A hybrid domain analysis for linear quadratic optimal control problems with control inequality constraints. International Journal of Systems Science, 1998, 29, 213-218.                            | 5.5 | 1         |
| 175 | Optimal control of singular systemsVIAlegendre series. International Journal of Computer<br>Mathematics, 1998, 70, 241-250.                                                                         | 1.8 | 21        |
| 176 | A collocation method for optimal control of linear systems with inequality constraints.<br>Mathematical Problems in Engineering, 1998, 3, 503-515.                                                  | 1.1 | 4         |
| 177 | Simultaneous reconstruction of approximate profiles of an inhomogeneous lossy medium through a collocation method. Journal Physics D: Applied Physics, 1997, 30, 3274-3278.                         | 2.8 | 5         |
| 178 | A Schur method for the solution of the matrix Riccati equation. International Journal of Mathematics<br>and Mathematical Sciences, 1997, 20, 335-338.                                               | 0.7 | 12        |
| 179 | Construction of smooth dielectric profiles by a pseudospectral method. Computers and Electrical Engineering, 1997, 23, 189-194.                                                                     | 4.8 | 2         |
| 180 | A Chebyshev spectral method for the solution of nonlinear optimal control problems. Applied<br>Mathematical Modelling, 1997, 21, 255-260.                                                           | 4.2 | 8         |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Short communication: A collocation-type method for linear quadratic optimal control problems.<br>Optimal Control Applications and Methods, 1997, 18, 227-235.                       | 2.1 | 62        |
| 182 | On the solution of the perturbed nonlinear Schr�dinger equation for the propagation of light in optical fibers. Microwave and Optical Technology Letters, 1997, 16, 74-77.          | 1.4 | 1         |
| 183 | Approximate solution to the envelope of a pulse propagating in a nonlinear optical fibre. IEE<br>Proceedings: Optoelectronics, 1996, 143, 200-204.                                  | 0.8 | 5         |
| 184 | An Alternative Method for a Classical Problem in the Calculus of Variations. Mathematical Methods<br>in the Applied Sciences, 1996, 19, 1091-1097.                                  | 2.3 | 1         |
| 185 | A Pseudospectral Method for Hammerstein Equations. Journal of Mathematical Analysis and Applications, 1996, 199, 579-591.                                                           | 1.0 | 13        |
| 186 | Application of Legendre series to the control problems governed by linear parabolic equations.<br>Mathematics and Computers in Simulation, 1996, 42, 77-84.                         | 4.4 | 6         |
| 187 | On the Greenâ€functions technique and phase velocity approximation of axially symmetric fields in stratified media. Journal of Mathematical Physics, 1996, 37, 3824-3832.           | 1.1 | 11        |
| 188 | Optimum pulse-width modulated patterns in induction motors using Walsh functions. Electric Power<br>Systems Research, 1995, 35, 87-91.                                              | 3.6 | 7         |
| 189 | Identification of nonlinear differential equations via Fourier series operational matrix for repeated integration. Applied Mathematics and Computation, 1995, 68, 189-198.          | 2.2 | 8         |
| 190 | A collocation-type method for the solution of inverse problems in dispersive scattering theory.<br>Microwave and Optical Technology Letters, 1995, 9, 14-17.                        | 1.4 | 5         |
| 191 | Solution of linear two-point boundary value problems via a collocation method and application to optimal control. International Journal of Computer Mathematics, 1995, 55, 105-111. | 1.8 | 1         |
| 192 | The pseudospectral Legendre method for discretizing optimal control problems. IEEE Transactions on<br>Automatic Control, 1995, 40, 1793-1796.                                       | 5.7 | 571       |
| 193 | A pseudospectral collocation method for the brachistochrone problem. Mathematics and Computers in Simulation, 1994, 36, 241-246.                                                    | 4.4 | 5         |
| 194 | Numerical solution of the controlled Duffing oscillator by the pseudospectral method. Journal of Computational and Applied Mathematics, 1994, 56, 253-261.                          | 2.0 | 10        |
| 195 | Linear quadratic optimal control problems via shifted Legendre state parametrization. International<br>Journal of Systems Science, 1994, 25, 393-399.                               | 5.5 | 24        |
| 196 | A legendre technique for solving time-varying linear quadratic optimal control problems. Journal of the Franklin Institute, 1993, 330, 453-463.                                     | 3.4 | 10        |
| 197 | Legendre series estimate of a distribution function. Journal of Statistical Computation and Simulation, 1993, 48, 19-27.                                                            | 1.2 | 0         |
| 198 | Identification of time-varying linear and bilinear systems via Fourier series. Computers and Electrical<br>Engineering, 1991, 17, 237-244.                                          | 4.8 | 6         |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Solutions of convolution integral and Fredholm integral equations via double Fourier series. Applied Mathematics and Computation, 1990, 40, 215-224.                                         | 2.2 | 10        |
| 200 | Optimal control of linear time-varying systems via Fourier series. Journal of Optimization Theory and Applications, 1990, 65, 375-384.                                                       | 1.5 | 21        |
| 201 | Solution of linear two-point boundary value problems and optimal control of time-varying systems by shifted Chebyshev approximations. Journal of the Franklin Institute, 1990, 327, 321-328. | 3.4 | 10        |
| 202 | Fourier series approach for the solution of linear two-point boundary value problems with time-varying coefficients. International Journal of Systems Science, 1990, 21, 1783-1794.          | 5.5 | 7         |
| 203 | Solutions of convolution integral and Fredholm integral equations via double Fourier series. Applied Mathematics and Computation, 1990, 40, 215-224.                                         | 2.2 | 12        |
| 204 | Taylor series analysis of time-varying multi-delay systems. International Journal of Control, 1989, 50,<br>183-192.                                                                          | 1.9 | 17        |
| 205 | Shifted-Jacobi series direct method for variational problems. International Journal of Systems<br>Science, 1989, 20, 1119-1129.                                                              | 5.5 | 6         |
| 206 | Optimal control of linear distributed-parameter systems via polynomial series. International Journal of Systems Science, 1989, 20, 1141-1148.                                                | 5.5 | 13        |
| 207 | Solution of linear two-point boundary value problems with time-varying coefficients via Taylor series. International Journal of Systems Science, 1989, 20, 2075-2084.                        | 5.5 | 5         |
| 208 | Instabilities in the solution of a heat conduction problem using taylor series and alternative approaches. Journal of the Franklin Institute, 1989, 326, 683-690.                            | 3.4 | 17        |
| 209 | Analysis of linear time-varying systems and bilinear systems via Fourier series. International Journal of<br>Control, 1989, 50, 889-898.                                                     | 1.9 | 9         |
| 210 | Functional approximation for inversion of Laplace transforms via polynomial series. International<br>Journal of Systems Science, 1989, 20, 1131-1139.                                        | 5.5 | 3         |
| 211 | Solution of linear two-point boundary-value problems via polynomial series. International Journal of<br>Systems Science, 1989, 20, 375-384.                                                  | 5.5 | 3         |
| 212 | Taylor series direct method for variational problems. Journal of the Franklin Institute, 1988, 325, 125-131.                                                                                 | 3.4 | 18        |
| 213 | Fourier series direct method for variational problems. International Journal of Control, 1988, 48, 887-895.                                                                                  | 1.9 | 87        |
| 214 | A computational solution for the matrix riccati equation using laplace transforms. International<br>Journal of Computer Mathematics, 1982, 11, 297-304.                                      | 1.8 | 8         |
| 215 | A computational solution for a Matrix Riccati differential equation. Numerische Mathematik, 1979, 32, 271-279.                                                                               | 1.9 | 22        |
| 216 | Solution of the matrix Riccati equation in optimal control. Information Sciences, 1978, 16, 61-73.                                                                                           | 6.9 | 21        |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Modified wavelet method for solving multitype variable-order fractional partial differential equations generated from the modeling of phenomena. Mathematical Sciences, 0, , 1. | 1.7 | 7         |