Woo-Kyun Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3443221/publications.pdf

Version: 2024-02-01

218381 253896 2,769 168 26 43 citations h-index g-index papers 171 171 171 2795 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Detection of individual trees and estimation of tree height using LiDAR data. Journal of Forest Research, 2007, 12, 425-434.	0.7	192
2	Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Science of the Total Environment, 2018, 618, 1089-1095.	3.9	130
3	Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. Advances in Space Research, 2016, 57, 64-77.	1.2	120
4	Understanding global PM2.5 concentrations and their drivers in recent decades (1998–2016). Environment International, 2020, 144, 106011.	4.8	112
5	Land Use and Land Cover Change Detection and Prediction in the Kathmandu District of Nepal Using Remote Sensing and GIS. Sustainability, 2020, 12, 3925.	1.6	92
6	Multi-Temporal Analysis of Forest Fire Probability Using Socio-Economic and Environmental Variables. Remote Sensing, 2019, 11, 86.	1.8	88
7	Modeling stem profiles for Pinus densiflora in Korea. Forest Ecology and Management, 2003, 172, 69-77.	1.4	64
8	Estimating Crown Variables of Individual Trees Using Airborne and Terrestrial Laser Scanners. Remote Sensing, 2011, 3, 2346-2363.	1.8	61
9	Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S. et Z. stand in Korea. Forest Ecology and Management, 2009, 257, 1420-1426.	1.4	56
10	Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban Forestry and Urban Greening, 2013, 12, 344-349.	2.3	56
11	Hyperspectral Analysis of Pine Wilt Disease to Determine an Optimal Detection Index. Forests, 2018, 9, 115.	0.9	56
12	DBH growth model for Pinus densiflora and Quercus variabilis mixed forests in central Korea. Ecological Modelling, 2004, 176, 187-200.	1.2	48
13	Forest Cover Classification by Optimal Segmentation of High Resolution Satellite Imagery. Sensors, 2011, 11, 1943-1958.	2.1	48
14	Influence of stand density on soil CO2 efflux for a Pinus densiflora forest in Korea. Journal of Plant Research, 2010, 123, 411-419.	1.2	46
15	Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. Journal of Plant Research, 2010, 123, 421-432.	1.2	43
16	Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971â€"2010. Sustainability, 2017, 9, 1017.	1.6	41
17	Determining the Effect of Green Spaces on Urban Heat Distribution Using Satellite Imagery. Asian Journal of Atmospheric Environment, 2012, 6, 127-135.	0.4	39
18	Spatial assessment of ecosystem functions and services for air purification of forests in South Korea. Environmental Science and Policy, 2016, 63, 27-34.	2.4	36

#	Article	IF	Citations
19	Economic viability of the national-scale forestation program: The case of success in the Republic of Korea. Ecosystem Services, 2018, 29, 40-46.	2.3	33
20	Socio-Ecological Niche and Factors Affecting Agroforestry Practice Adoption in Different Agroecologies of Southern Tigray, Ethiopia. Sustainability, 2019, 11, 3729.	1.6	32
21	Can satellite-based data substitute for surveyed data to predict the spatial probability of forest fire? A geostatistical approach to forest fire in the Republic of Korea. Geomatics, Natural Hazards and Risk, 2019, 10, 719-739.	2.0	32
22	Decoupling of forest water supply and agricultural water demand attributable to deforestation in North Korea. Journal of Environmental Management, 2019, 248, 109256.	3.8	30
23	Estimating the spatial pattern of human-caused forest fires using a generalized linear mixed model with spatial autocorrelation in South Korea. International Journal of Geographical Information Science, 2012, 26, 1589-1602.	2.2	29
24	Monitoring of Vegetation Dynamics in the Mongolia Using MODIS NDVIs and their Relationship to Rainfall by Natural Zone. Journal of the Indian Society of Remote Sensing, 2015, 43, 325-337.	1.2	28
25	Assessing Climate Change Impact on Forest Habitat Suitability and Diversity in the Korean Peninsula. Forests, 2018, 9, 259.	0.9	28
26	Fine Root Dynamics in Thinned and Limed Pitch Pine and Japanese Larch Plantations. Journal of Plant Nutrition, 2007, 30, 1821-1839.	0.9	27
27	Understanding global spatio-temporal trends and the relationship between vegetation greenness and climate factors by land cover during 1982–2014. Global Ecology and Conservation, 2020, 24, e01299.	1.0	27
28	Impact of Deforestation on Agro-Environmental Variables in Cropland, North Korea. Sustainability, 2017, 9, 1354.	1.6	26
29	Application of the Savitzky-Golay Filter to Land Cover Classification Using Temporal MODIS Vegetation Indices. Photogrammetric Engineering and Remote Sensing, 2014, 80, 675-685.	0.3	25
30	Comparison of spatial interpolation techniques for predicting climate factors in Korea. Forest Science and Technology, 2010, 6, 97-109.	0.3	24
31	An assessment of climate change impacts and adaptation in South Asian agriculture. International Journal of Climate Change Strategies and Management, 2017, 9, 517-534.	1.5	24
32	Estimation of forest carbon budget from land cover change in South and North Korea between 1981 and 2010. Journal of Plant Biology, 2014, 57, 225-238.	0.9	22
33	Correlation between Desertification and Environmental Variables Using Remote Sensing Techniques in Hogno Khaan, Mongolia. Sustainability, 2017, 9, 581.	1.6	22
34	Assessing environmentally sensitive land to desertification using MEDALUS method in Mongolia. Forest Science and Technology, 2019, 15, 210-220.	0.3	22
35	Deep Learning Applications on Multitemporal SAR (Sentinel-1) Image Classification Using Confined Labeled Data: The Case of Detecting Rice Paddy in South Korea. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 7589-7601.	2.7	22
36	Modeling stand-level mortality based on maximum stem number and seasonal temperature. Forest Ecology and Management, 2017, 386, 37-50.	1.4	21

#	Article	IF	Citations
37	Forest management can mitigate negative impacts of climate and land-use change on plant biodiversity: Insights from the Republic of Korea. Journal of Environmental Management, 2021, 288, 112400.	3.8	20
38	Estimation of carbon storage based on individual tree detection in Pinus densiflora stands using a fusion of aerial photography and LiDAR data. Science China Life Sciences, 2010, 53, 885-897.	2.3	19
39	Estimation of Voxel-Based Above-Ground Biomass Using Airborne LiDAR Data in an Intact Tropical Rain Forest, Brunei. Forests, 2016, 7, 259.	0.9	19
40	Impact of thinning intensity on the diameter and height growth ofLarix kaempferistands in central Korea. Forest Science and Technology, 2016, 12, 77-87.	0.3	19
41	Estimation of future carbon budget with climate change and reforestation scenario in North Korea. Advances in Space Research, 2016, 58, 1002-1016.	1.2	19
42	Hydrological Response of Dry Afromontane Forest to Changes in Land Use and Land Cover in Northern Ethiopia. Remote Sensing, 2019, 11, 1905.	1.8	19
43	Spatio-temporal change in forest cover and carbon storage considering actual and potential forest cover in South Korea. Science China Life Sciences, 2015, 58, 713-723.	2.3	18
44	Assessing vulnerability of forests to climate change in South Korea. Journal of Forestry Research, 2016, 27, 489-503.	1.7	18
45	Chemical accident hazard assessment by spatial analysis of chemical factories and accident records in South Korea. International Journal of Disaster Risk Reduction, 2018, 27, 37-47.	1.8	18
46	Identifying potential vegetation establishment areas on the dried Aral Sea floor using satellite images. Land Degradation and Development, 2020, 31, 2749-2762.	1.8	18
47	Changes in the distribution of South Korean forest vegetation simulated using thermal gradient indices. Science China Life Sciences, 2010, 53, 784-797.	2.3	17
48	Developing spatial agricultural drought risk index with controllable geo-spatial indicators: A case study for South Korea and Kazakhstan. International Journal of Disaster Risk Reduction, 2021, 54, 102056.	1.8	17
49	Conservation, Restoration, and Sustainable Use of Biodiversity Based on Habitat Quality Monitoring: A Case Study on Jeju Island, South Korea (1989–2019). Land, 2021, 10, 774.	1.2	17
50	Geostatistical analysis of regional differences in stem taper form of Pinus densiflora in central Korea. Ecological Research, 2006, 21, 513-525.	0.7	16
51	Assessing the impacts of topographic and climatic factors on radial growth of major forest forming tree species of South Korea. Forest Ecology and Management, 2017, 404, 269-279.	1.4	16
52	Assessment of Agricultural Drought Considering the Hydrological Cycle and Crop Phenology in the Korean Peninsula. Water (Switzerland), 2019, 11, 1105.	1.2	16
53	Estimation of the Virtual Water Content of Main Crops on the Korean Peninsula Using Multiple Regional Climate Models and Evapotranspiration Methods. Sustainability, 2017, 9, 1172.	1.6	15
54	Estimation of the ecosystem carbon budget in South Korea between 1999 and 2008. Ecological Research, 2013, 28, 1045-1059.	0.7	14

#	Article	IF	CITATIONS
55	Spatial and Temporal Analysis of Dry and Wet Spells in Upper Awash River Basin, Ethiopia. Water (Switzerland), 2020, 12, 3051.	1.2	14
56	The necessity and availability of noise-free daily satellite-observed NDVI during rapid phenological changes in terrestrial ecosystems in East Asia. Forest Science and Technology, 2011, 7, 174-183.	0.3	13
57	Studying Air Pollutants Origin and Associated Meteorological Parameters over Seoul from 2000 to 2009. Advances in Meteorology, 2015, 2015, 1-12.	0.6	13
58	Quantifying Impacts of National-Scale Afforestation on Carbon Budgets in South Korea from 1961 to 2014. Forests, 2019, 10, 579.	0.9	13
59	Rainfall Characterization and Trend Analysis of Wet Spell Length across Varied Landscapes of the Upper Awash River Basin, Ethiopia. Sustainability, 2020, 12, 9221.	1.6	13
60	Spatiotemporal multi-index analysis of desertification in dry Afromontane forests of northern Ethiopia. Environment, Development and Sustainability, 2021, 23, 423-450.	2.7	13
61	Enhancing the provisioning of ecosystem services in South Korea under climate change: The benefits and pitfalls of current forest management strategies. Regional Environmental Change, 2021, 21, 1.	1.4	13
62	Evaluation and Comparison of Satellite-Derived Estimates of Rainfall in the Diverse Climate and Terrain of Central and Northeastern Ethiopia. Remote Sensing, 2021, 13, 1275.	1.8	13
63	Habitat Quality Valuation Using InVEST Model in Jeju Island. Journal of the Korea Society of Environmental Restoration Technology, 2015, 18, 1-11.	0.1	13
64	Estimating plot volume using lidar height and intensity distributional parameters. International Journal of Remote Sensing, 2014, 35, 4601-4629.	1.3	12
65	Development of an Integrated DBH Estimation Model Based on Stand and Climatic Conditions. Forests, 2018, 9, 155.	0.9	12
66	Assessment of Drought Severity on Cropland in Korea Peninsula using Normalized Precipitation Evapotranspiration Index (NPEI). Journal of Climate Change Research, 2015, 6, 223.	0.1	12
67	Spatial assessment of land degradation using <scp>MEDALUS</scp> focusing on potential afforestation and reforestation areas in Ethiopia. Land Degradation and Development, 2022, 33, 79-93.	1.8	12
68	Comparison of Sampling and Wall-to-Wall Methodologies for Reporting the GHG Inventory of the LULUCF Sector in Korea. Journal of Climate Change Research, 2018, 9, 385-398.	0.1	12
69	Can a national afforestation plan achieve simultaneous goals of biodiversity and carbon enhancement? Exploring optimal decision making using multi-spatial modeling. Biological Conservation, 2022, 267, 109474.	1.9	12
70	Long-term trend of and correlation between vegetation greenness and climate variables in Asia based on satellite data. MethodsX, 2018, 5, 803-807.	0.7	11
71	Drought monitoring of the wetland in the Tumen River Basin between 1991 and 2016 using Landsat TM/ETM+. International Journal of Remote Sensing, 2019, 40, 1445-1459.	1.3	11
72	Developing an Adaptive Pathway to Mitigate Air Pollution Risk for Vulnerable Groups in South Korea. Sustainability, 2020, 12, 1790.	1.6	11

#	Article	IF	CITATIONS
73	Evaluation for Damaged Degree of Vegetation by Forest Fire using Lidar and a Digital Aerial Photograph. Photogrammetric Engineering and Remote Sensing, 2010, 76, 277-287.	0.3	10
74	Spatially Explicit Assessment of Agricultural Water Equilibrium in the Korean Peninsula. Sustainability, 2018, 10, 201.	1.6	10
75	Determining economically viable forest management option with consideration of ecosystem services in Korea: A strategy after successful national forestation. Ecosystem Services, 2020, 41, 101053.	2.3	10
76	Integrating Satellite Rainfall Estimates with Hydrological Water Balance Model: Rainfall-Runoff Modeling in Awash River Basin, Ethiopia. Water (Switzerland), 2021, 13, 800.	1.2	10
77	Assessing the EPIC Model for Estimation of Future Crops Yield in South Korea. Journal of Climate Change Research, 2015, 6, 21.	0.1	10
78	Responses of Agroecosystems to Climate Change: Specifics of Resilience in the Mid-Latitude Region. Sustainability, 2017, 9, 1361.	1.6	9
79	Sustainable Management of Carbon Sequestration Service in Areas with High Development Pressure: Considering Land Use Changes and Carbon Costs. Sustainability, 2019, 11, 5116.	1.6	9
80	Sustainable Water Security Based on the SDG Framework: A Case Study of the 2019 Metro Manila Water Crisis. Sustainability, 2020, 12, 6860.	1.6	9
81	Vulnerability Assessment for Forest Ecosystem to Climate Change Based on Spatio-temporal Information. Korean Journal of Remote Sensing, 2012, 28, 159-169.	0.4	9
82	Predicting distributional change of forest cover and volume in future climate of South Korea. Forest Science and Technology, 2012, 8, 105-115.	0.3	8
83	RGB-NDVI color composites for monitoring the change in mangrove area at the Maubesi Nature Reserve, Indonesia. Forest Science and Technology, 2013, 9, 171-179.	0.3	8
84	Small-scale spatial variability of soil properties in a Korean swamp. Landscape and Ecological Engineering, 2015, 11, 303-312.	0.7	8
85	Assessing Forest Ecosystems across the Vertical Edge of the Mid-Latitude Ecotone Using the BioGeoChemistry Management Model (BGC-MAN). Forests, 2019, 10, 523.	0.9	8
86	A review of forest fire and policy response for resilient adaptation under changing climate in the Eastern Himalayan region. Forest Science and Technology, 2021, 17, 180-188.	0.3	8
87	Development on Crop Yield Forecasting Model for Major Vegetable Crops using Meteorological Information of Main Production Area. Journal of Climate Change Research, 2016, 7, 193.	0.1	8
88	Application of integrated Korean forest growth dynamics model to meet NDC target by considering forest management scenarios and budget. Carbon Balance and Management, 2022, 17, .	1.4	8
89	Assessment of land-cover change using GIS and remotely-sensed data: A case study in Ain Snoussi area of northern Tunisia. Forest Science and Technology, 2011, 7, 75-81.	0.3	7
90	Desertification monitoring by LANDSAT TM satellite imagery. Forest Science and Technology, 2011, 7, 110-116.	0.3	7

#	Article	IF	Citations
91	Detecting and cleaning outliers for robust estimation of variogram models in insect count data. Ecological Research, 2012, 27, 1-13.	0.7	7
92	Classification of Global Land Development Phases by Forest and GDP Changes for Appropriate Land Management in the Mid-Latitude. Sustainability, 2017, 9, 1342.	1.6	7
93	Development of a Screening Method for Health Hazard Ranking and Scoring of Chemicals Using the Mahalanobis–Taguchi System. International Journal of Environmental Research and Public Health, 2018, 15, 2208.	1.2	7
94	Restoration Plan for Degraded Forest in The Democratic People's Republic of Korea Considering Suitable Tree Species and Spatial Distribution. Sustainability, 2018, 10, 856.	1.6	7
95	A Holistic View of Soils in Delivering Ecosystem Services in Forests: A Case Study in South Korea. Forests, 2019, 10, 487.	0.9	7
96	Assessing Socio-Economic Impacts of Agricultural Subsidies: A Case Study from Bhutan. Sustainability, 2019, 11, 3266.	1.6	7
97	Climate Change Impact on Korean Forest and Forest Management Strategies. Hangug Hwangyeong Saengmul Haghoeji, 2017, 35, 413-425.	0.1	7
98	Applicability Analysis of FAO56 Penman-Monteith Methodology for Estimating Potential Evapotranspiration in Andong Dam Watershed Using Limited Meteorological Data. Journal of Climate Change Research, 2017, 8, 125-143.	0.1	7
99	Carbon stocks and its variations with topography in an intact lowland mixed dipterocarp forest in Brunei. Journal of Ecology and Environment, 2015, 38, 75-84.	1.6	7
100	How Do Nature-Based Solutions Improve Environmental and Socio-Economic Resilience to Achieve the Sustainable Development Goals? Reforestation and Afforestation Cases from the Republic of Korea. Sustainability, 2021, 13, 12171.	1.6	7
101	Analysis and prediction of the spatial distribution of EPT (Ephemeroptera, Plecoptera, and Trichoptera) assemblages in the Han River watershed in Korea. Journal of Asia-Pacific Entomology, 2017, 20, 613-625.	0.4	6
102	Integrated Approaches for National Ecosystem Assessment in South Korea. KSCE Journal of Civil Engineering, 2018, 22, 1634-1641.	0.9	6
103	Inferring the potential impact of human activities on evapotranspiration in the Tumen River Basin based on LANDSAT imagery and historical statistics. Land Degradation and Development, 2021, 32, 926-935.	1.8	6
104	Phenological Classification Using Deep Learning and the Sentinel-2 Satellite to Identify Priority Afforestation Sites in North Korea. Remote Sensing, 2021, 13, 2946.	1.8	6
105	Estimation of Future Land Cover Considering Shared Socioeconomic Pathways using Scenario Generators. Journal of Climate Change Research, 2018, 9, 223-234.	0.1	6
106	Estimation of Vegetation Carbon Budget in South Korea using Ecosystem Model and Spatio-temporal Environmental Information. Korean Journal of Remote Sensing, 2012, 28, 145-157.	0.4	6
107	Pilot Study and Development of Activity Data for Greenhouse Gas Inventory of Settlement Categories in Korea: A Case of Incheon Seo-gu. Journal of Climate Change Research, 2020, 11, 187-196.	0.1	6
108	Estimation of effective plant area index for South Korean forests using LiDAR system. Science China Life Sciences, 2010, 53, 898-908.	2.3	5

#	Article	IF	CITATIONS
109	Vulnerability Assessment of Forest Ecosystem to Climate Change in Korea Using MC1 Model(<special) etqq1<="" th="" tj=""><th>1.0.7843 0.1</th><th>14 rgBT /</th></special)>	1.0.7843 0.1	14 rgBT /
110	Influence of forest tending (Soopkakkugi) works on litterfall and nutrient inputs in a <i>Pinus densiflora</i> stand. Forest Science and Technology, 2012, 8, 83-88.	0.3	5
111	Estimating carbon stocks in Korean forests between 2010 and 2110: a prediction based on forest volume–age relationships. Forest Science and Technology, 2013, 9, 105-110.	0.3	5
112	Applicability Analysis of Vegetation Condition and Dryness for Sand and Dust Storm (SDS) Risk Reduction in SDS Source and Receptor Region. Sustainability, 2020, 12, 7256.	1.6	5
113	Species- and elevation-dependent productivity changes in East Asian temperate forests. Environmental Research Letters, 2020, 15, 034012.	2.2	5
114	Assessing Climate Change Impact on Cropland Suitability in Kyrgyzstan: Where Are Potential High-Quality Cropland and the Way to the Future. Agronomy, 2021, 11, 1490.	1.3	5
115	Feasibility of Vegetation Temperature Condition Index for monitoring desertification in Bulgan, Mongolia. Korean Journal of Remote Sensing, 2013, 29, 621-629.	0.4	5
116	Assessing Effects of Shortening Final Cutting Age on Future COâ,, Absorption of Forest in Korea. Journal of Climate Change Research, 2016, 7, 157.	0.1	5
117	Comparative Analysis on the Sequestration of CO2 Depending on Spatial Ranges for Estimating Greenhouse Gas Inventory in Settlement : In Case of Seoul. Journal of Climate Change Research, 2021, 12, 767-776.	0.1	5
118	Development of earth observational diagnostic drought prediction model for regional error calibration: A case study on agricultural drought in Kyrgyzstan. GIScience and Remote Sensing, 2022, 59, 36-53.	2.4	5
119	Forest plot volume estimation using National Forest Inventory, Forest Type Map and Airborne LiDAR data. Forest Science and Technology, 2012, 8, 89-98.	0.3	4
120	Litter decomposition and nutrient dynamics following forest tending (Soopkakkugi) works in aPinus densiflorastand. Forest Science and Technology, 2012, 8, 99-104.	0.3	4
121	Unconstrained approach for isolating individual trees using high-resolution aerial imagery. International Journal of Remote Sensing, 2014, 35, 89-114.	1.3	4
122	Selecting and applying quantification models for ecosystem services to forest ecosystems in South Korea. Journal of Forestry Research, 2016, 27, 1373-1384.	1.7	4
123	Risk hotspot of chemical accidents based on spatial analysis in Ulsan, South Korea. Safety Science, 2020, 123, 104544.	2.6	4
124	Assessment of Forest Degradation and Carbon Storage for REDD+ Project in North Korea. Hangug Hwangyeong Saengmul Haghoeji, 2016, 34, 1-7.	0.1	4
125	Development of Forest Activity Data and Forest Management Rate for National Greenhouse Gas Inventory in the Forest Sector. Journal of Climate Change Research, 2020, 11, 53-63.	0.1	4
126	Estimating the Soil Carbon Stocks for a Pinus densiflora Forest Using the Soil Carbon Model, Yasso. Journal of Ecology and Environment, 2009, 32, 47-53.	1.6	4

#	Article	IF	CITATIONS
127	Automated Individual Tree Detection and Crown Delineation Using High Spatial Resolution RGB Aerial Imagery. Korean Journal of Remote Sensing, 2011, 27, 703-715.	0.4	4
128	Potential Distribution of Endangered Coniferous Tree Species under Climate Change. Journal of Climate Change Research, 2020, 11, 215-226.	0.1	4
129	Landscape pattern and climate dynamics effects on ecohydrology and implications for runoff management: case of a dry Afromontane forest in northern Ethiopia. Geocarto International, 2022, 37, 12466-12487.	1.7	4
130	Mapping forest functions using GIS at plateau area, Laos. Forest Science and Technology, 2009, 5, 57-61.	0.3	3
131	Application of CASI Hyperspectral Image to Analysis of the Distribution of Hydrogen-Fluoride-Damaged Vegetation in Gumi, Korea. Journal of the Indian Society of Remote Sensing, 2017, 45, 317-326.	1.2	3
132	Developing UAV-Based Forest Spatial Information and Evaluation Technology for Efficient Forest Management. Sustainability, 2020, 12, 10150.	1.6	3
133	Analysis on the Linkage between SDGs Framework and Forest Policy in Korea. Journal of Climate Change Research, 2017, 8, 425-442.	0.1	3
134	Forest Canopy Density Estimation Using Airborne Hyperspectral Data. Korean Journal of Remote Sensing, 2012, 28, 297-305.	0.4	3
135	Changes in Air Temperature and Surface Temperature of Crop Leaf and Soil. Journal of Climate Change Research, 2015, 6, 209.	0.1	3
136	Application of deep learning algorithm for estimating stand volume in South Korea. Journal of Applied Remote Sensing, 2022, 16, .	0.6	3
137	A forest planning model for continuous employment in a forested village with primarily young stands in Korea. New Forests, 2005, 29, 15-32.	0.7	2
138	A GIS based study on spatial characteristics of wild boar movement. Forest Science and Technology, 2007, 3, 78-84.	0.3	2
139	Forest structure and carbon dynamics of an intact lowland mixed dipterocarp forest in Brunei Darussalam. Journal of Forestry Research, 2018, 29, 199-203.	1.7	2
140	Analysis of Developmental Chronology of South Korean Compressed Growth as a Reference from Sustainable Development Perspectives. Sustainability, 2021, 13, 1905.	1.6	2
141	Detecting Individual Tree Position and Height Using Airborne LiDAR Data in Chollipo Arboretum, South Korea. Terrestrial, Atmospheric and Oceanic Sciences, 2016, 27, 593.	0.3	2
142	Effects of Forest Tending Works on Carbon Storage in a Pinus densiflora Stand. Journal of Ecology and Environment, 2007, 30, 281-285.	1.6	2
143	Assessing the Extent and Rate of Deforestation in the Mountainous Tropical Forest. Korean Journal of Remote Sensing, 2011, 27, 315-328.	0.4	2
144	Current Status of Children's Gardens Within Public Gardens in the United States. HortTechnology, 2015, 25, 671-680.	0.5	2

#	Article	IF	Citations
145	Growth and carbon storage of black saxaul in afforested areas of the Aralkum Desert. Hangug Hwangyeong Saengmul Haghoeji, 2019, 37, 618-624.	0.1	2
146	Analysis on Inter-linkage between Korean-Sustainable Development Goals (K-SDGs) and Major Forest Policies and Plans. Journal of Climate Change Research, 2020, 11, 583-596.	0.1	2
147	Selection of suitable areas for rubber tree (Hevea brasiliensi) plantation using GISâ€data in Laos. Forest Science and Technology, 2010, 6, 55-66.	0.3	1
148	Mapping forest functions using GIS in Selenge Province, Mongolia. Forest Science and Technology, 2011, 7, 23-29.	0.3	1
149	Analyzing Climate Zones Using Hydro-Meteorological Observation Data in Andong Dam Watershed, South Korea. Journal of Climate Change Research, 2016, 7, 269.	0.1	1
150	Spatial Distribution and Radial Growth Response of Pinus densiflora to Climatic and Topographic Factors in Central Urban Forest of Seoul, Korea(< Special Issue > Multipurpose Forest Management). Journal of Forest Planning, 2011, 16, 163-169.	0.1	1
151	Education Programs in Public Children's Gardens in the United States. HortTechnology, 2016, 26, 70-82.	0.5	1
152	Study on Site Selection of A/R CDM Using LiDAR Data. Korean Journal of Remote Sensing, 2012, 28, 587-596.	0.4	1
153	Estimation of Stand-level Above Ground Biomass in Intact Tropical Rain Forests of Brunei using Airborne LiDAR data. Korean Journal of Remote Sensing, 2015, 31, 127-136.	0.4	1
154	Maximum Canopy Height Estimation Using ICESat GLAS Laser Altimetry. Korean Journal of Remote Sensing, 2012, 28, 307-318.	0.4	1
155	A Study on Development of Small Sensor Observation System Based on IoT Using Drone. Journal of Environmental Science International, 2018, 27, 1155-1167.	0.0	1
156	Analysis of Design Elements and Barriers to Link the Emission Trading Systems between the Republic of Korea and China. Journal of Climate Change Research, 2018, 9, 471-485.	0.1	1
157	Green Infrastructure Planning for Urban Flood Damage Reduction based on an Optimal Surface Runoff Network. Journal of Climate Change Research, 2020, 11, 739-753.	0.1	1
158	Effects of Forest and Agriculture Land Covers on Organic Carbon Flux Mediated through Precipitation. Water (Switzerland), 2022, 14, 623.	1.2	1
159	Evaluation on Forest Cooperation Feasibility using a REDD+ Strategic System in Vietnam. Journal of Climate Change Research, 2022, 13, 167-187.	0.1	1
160	Estimation of PAI <inf>e</inf> using airborne LiDAR data in South Korea. , 2012, , .		0
161	Landscape Elements and User Satisfaction in National Street: Focusing on Gwangwhamun Square. LHI Journal of Land Housing and Urban Affairs, 2014, 5, 215-224.	0.0	0
162	A Study of Future Residential Land Use Change considering Climate Change using Land Use Equilibrium Model in Jeju. Journal of Climate Change Research, 2015, 6, 1.	0.1	0

Woo-Kyun Lee

#	Article	IF	CITATIONS
163	Applicability Analysis of Chemical Fate Model Considering Climate Change Impact in Municipal and Industrial Areas in Korea. Journal of Climate Change Research, 2015, 6, 121.	0.1	0
164	The Current Status and Improvement Plan of Environmental Education Program in Relation to Climate Change in the Seoul Metropolitan Area. Journal of Climate Change Research, 2016, 7, 169.	0.1	0
165	The Relationship between Stand Mean DBH and Temperature at a Watershed Scale: The Case of Andong-dam Basin. Korean Journal of Agricultural and Forest Meteorology, 2016, 18, 287-297.	0.2	O
166	Estimating the Carbon Dioxide Emission in Jeju Ecotourism. Journal of Climate Change Research, 2019, 10, 79-87.	0.1	0
167	Status of Spatial Data Construction for Climate Change Mitigation and Adaptation in Central Asia. Journal of Climate Change Research, 2020, 11, 329-342.	0.1	0
168	Analysis and Evaluation of A/R CDM Projects in India for Abroad Afforestation Project. Journal of Climate Change Research, 2021, 12, 443-460.	0.1	0