Tianbin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3443030/publications.pdf Version: 2024-02-01

ΤΙΔΝΒΙΝ Μ/Π

#	Article	IF	CITATIONS
1	MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chemistry, 2009, 11, 1031.	9.0	427
2	Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by introducing oxygen vacancies. Green Chemistry, 2020, 22, 843-849.	9.0	126
3	Ru nanoparticles immobilized on metal–organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst. Green Chemistry, 2011, 13, 2078.	9.0	108
4	Solvent determines the formation and properties of metal–organic frameworks. RSC Advances, 2015, 5, 37691-37696.	3.6	95
5	Highly effective photoreduction of CO ₂ to CO promoted by integration of CdS with molecular redox catalysts through metal–organic frameworks. Chemical Science, 2018, 9, 8890-8894.	7.4	95
6	Efficient hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over a cobalt and copper bimetallic catalyst on N-graphene-modified Al ₂ O ₃ . Green Chemistry, 2016, 18, 6222-6228.	9.0	92
7	Ru–Zn supported on hydroxyapatite as an effective catalyst for partial hydrogenation of benzene. Green Chemistry, 2013, 15, 152-159.	9.0	84
8	The highly selective aerobic oxidation of cyclohexane to cyclohexanone and cyclohexanol over V ₂ O ₅ @TiO ₂ under simulated solar light irradiation. Green Chemistry, 2017, 19, 311-318.	9.0	78
9	Facile one-pot synthesis of VxOy@C catalysts using sucrose for the direct hydroxylation of benzene to phenol. Green Chemistry, 2013, 15, 1150.	9.0	67
10	ZIF-67-Derived Cobalt/Nitrogen-Doped Carbon Composites for Efficient Electrocatalytic N ₂ Reduction. ACS Applied Energy Materials, 2019, 2, 6071-6077.	5.1	67
11	Seeding Growth of Pd/Au Bimetallic Nanoparticles on Highly Cross-Linked Polymer Microspheres with Ionic Liquid and Solvent-Free Hydrogenation. Journal of Physical Chemistry C, 2010, 114, 3396-3400.	3.1	63
12	Highly selective oxidation of cyclohexene to 2-cyclohexene-1-one in water using molecular oxygen over Fe–Co–g-C ₃ N ₄ . Catalysis Science and Technology, 2016, 6, 193-200.	4.1	62
13	Bromide promoted hydrogenation of CO ₂ to higher alcohols using Ru–Co homogeneous catalyst. Chemical Science, 2016, 7, 5200-5205.	7.4	54
14	Highly selective benzene hydrogenation to cyclohexene over supported Ru catalyst without additives. Green Chemistry, 2011, 13, 1106.	9.0	43
15	Light-driven integration of the reduction of nitrobenzene to aniline and the transformation of glycerol into valuable chemicals in water. RSC Advances, 2015, 5, 36347-36352.	3.6	42
16	Highly efficient Meerwein–Ponndorf–Verley reductions over a robust zirconium-organoboronic acid hybrid. Green Chemistry, 2021, 23, 1259-1265.	9.0	41
17	Using the hydrogen and oxygen in water directly for hydrogenation reactions and glucose oxidation by photocatalysis. Chemical Science, 2016, 7, 463-468.	7.4	40
18	The <i>in situ</i> study of surface species and structures of oxide-derived copper catalysts for electrochemical CO ₂ reduction. Chemical Science, 2021, 12, 5938-5943.	7.4	40

Tianbin Wu

#	Article	IF	CITATIONS
19	Preparation of Ru/Graphene using Glucose as Carbon Source and Hydrogenation of Levulinic Acid to γâ€Valerolactone. Chemistry - an Asian Journal, 2016, 11, 2792-2796.	3.3	39
20	Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde. Molecules, 2015, 20, 12686-12697.	3.8	36
21	Catalysis of photooxidation reactions through transformation between Cu ²⁺ and Cu ⁺ in TiO ₂ –Cu–MOF composites. Chemical Communications, 2018, 54, 5984-5987.	4.1	34
22	Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran under Mild Conditions without Any Additive. ACS Sustainable Chemistry and Engineering, 2019, 7, 5711-5716.	6.7	33
23	Simultaneous and selective transformation of glucose to arabinose and nitrosobenzene to azoxybenzene driven by visible-light. Green Chemistry, 2016, 18, 3852-3857.	9.0	32
24	Cross-linked polymer coated Pd nanocatalysts on SiO2 support: very selective and stable catalysts for hydrogenation in supercritical CO2. Green Chemistry, 2009, 11, 798.	9.0	30
25	V _{<i>x</i>} O _{<i>y</i>} Supported on Hydrophobic Poly(Ionic Liquid)s as an Efficient Catalyst for Direct Hydroxylation of Benzene to Phenol. ChemCatChem, 2015, 7, 3526-3532.	3.7	24
26	Room-temperature synthesis of mesoporous CuO and its catalytic activity for cyclohexene oxidation. RSC Advances, 2015, 5, 67168-67174.	3.6	24
27	The Hydrogenation of Aromatic Compounds under Mild Conditions by Using a Solid Lewis Acid and Supported Palladium Catalyst. ChemCatChem, 2014, 6, 3323-3327.	3.7	23
28	Support Effect of Ru Catalysts for Efficient Conversion of Biomass-Derived 2,5-Hexanedione to Different Products. ACS Catalysis, 2021, 11, 7685-7693.	11.2	22
29	Ru–Cd/Bentonite for the Partial Hydrogenation of Benzene: A Catalyst without Additives. ChemCatChem, 2012, 4, 1836-1843.	3.7	20
30	Efficient Transformation of Anisole into Methylated Phenols over High‣ilica HY Zeolites under Mild Conditions. ChemCatChem, 2015, 7, 2831-2835.	3.7	19
31	Efficient Generation of Lactic Acid from Glycerol over a Ruâ€Zn u ^I /Hydroxyapatite Catalyst. Chemistry - an Asian Journal, 2017, 12, 1598-1604.	3.3	19
32	Waterâ€in‣upercritical CO ₂ Microemulsion Stabilized by a Metal Complex. Angewandte Chemie - International Edition, 2016, 55, 13533-13537.	13.8	18
33	Boosting CO ₂ electroreduction over Co nanoparticles supported on N,B-co-doped graphitic carbon. Green Chemistry, 2022, 24, 1488-1493.	9.0	18
34	Enhancing the selective hydrogenation of benzene to cyclohexene over Ru/TiO2 catalyst in the presence of a very small amount of ZnO. Science China Chemistry, 2015, 58, 93-100.	8.2	14
35	Tuning the efficiency and product composition for electrocatalytic CO ₂ reduction to syngas over zinc films by morphology and wettability. Green Chemistry, 2022, 24, 1439-1444.	9.0	11
36	Production of Piperidine and δâ€Lactam Chemicals from Biomassâ€Derived Triacetic Acid Lactone. Angewandte Chemie - International Edition, 2021, 60, 14405-14409.	13.8	10

TIANBIN WU

#	Article	IF	CITATIONS
37	Dehydroxyalkylative halogenation of C(aryl)–C bonds of aryl alcohols. Chemical Communications, 2020, 56, 7120-7123.	4.1	7
38	Waterâ€inâ€Supercritical CO ₂ Microemulsion Stabilized by a Metal Complex. Angewandte Chemie, 2016, 128, 13731-13735.	2.0	6
39	Highly efficient C(CO)–C(alkyl) bond cleavage in ketones to access esters over ultrathin N-doped carbon nanosheets. Chemical Science, 2022, 13, 5196-5204.	7.4	6
40	Bimetallic Au/Pd catalyzed aerobic oxidation of alcohols in the poly(ethylene glycol)/CO2 system. Science China Chemistry, 2010, 53, 1592-1597.	8.2	2
41	Efficient synthesis of cyclic carbonates from CO ₂ under ambient conditions over Zn(betaine) ₂ Br ₂ : experimental and theoretical studies. Physical Chemistry Chemical Physics, 2022, 24, 4298-4304.	2.8	2
42	A depth-suitable and water-stable trap for CO2 capture. RSC Advances, 2021, 11, 15748-15752.	3.6	0
43	Production of Piperidine and δâ€Lactam Chemicals from Biomassâ€Derived Triacetic Acid Lactone. Angewandte Chemie, 2021, 133, 14526-14530.	2.0	Ο