Leonardo Degennaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3443016/publications.pdf

Version: 2024-02-01

185998 182168 2,976 92 28 51 citations h-index g-index papers 110 110 110 2246 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Recent Advances in the Stereoselective Synthesis of Aziridines. Chemical Reviews, 2014, 114, 7881-7929.	23.0	395
2	Transfer of Electrophilic NH Using Convenient Sources of Ammonia: Direct Synthesis of NH Sulfoximines from Sulfoxides. Angewandte Chemie - International Edition, 2016, 55, 7203-7207.	7.2	162
3	Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis. Beilstein Journal of Organic Chemistry, 2017, 13, 520-542.	1.3	158
4	Synthesis of NH-sulfoximines from sulfides by chemoselective one-pot N- and O-transfers. Chemical Communications, 2017, 53, 348-351.	2.2	136
5	Straightforward Strategies for the Preparation of NH-SulfoxÂimines: A Serendipitous Story. Synlett, 2017, 28, 2525-2538.	1.0	112
6	Exploiting a "Beast―in Carbenoid Chemistry: Development of a Straightforward Direct Nucleophilic Fluoromethylation Strategy. Journal of the American Chemical Society, 2017, 139, 13648-13651.	6.6	104
7	Recent advances in the chemistry of metallated azetidines. Organic and Biomolecular Chemistry, 2017, 15, 34-50.	1.5	102
8	Synthesis and Transformations of NHâ€6ulfoximines. Chemistry - A European Journal, 2021, 27, 17293-17321.	1.7	78
9	Modular and Chemoselective Strategy for the Direct Access to α-Fluoroepoxides and Aziridines via the Addition of Fluoroiodomethyllithium to Carbonyl-Like Compounds. Organic Letters, 2019, 21, 584-588.	2.4	65
10	Titanium Dioxide as a Catalyst in Biodiesel Production. Catalysts, 2019, 9, 75.	1.6	65
11	Fluoroâ€ S ubstituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angewandte Chemie - International Edition, 2020, 59, 10924-10928.	7.2	60
12	External Trapping of Halomethyllithium Enabled by Flow Microreactors. Advanced Synthesis and Catalysis, 2015, 357, 21-27.	2.1	58
13	Chiral Switchable Catalysts for Dynamic Control of Enantioselectivity. ACS Catalysis, 2017, 7, 4100-4114.	5.5	58
14	Synthesis of Sulfonimidamides from Sulfenamides via an Alkoxyâ€aminoâ€ĥ» ⁶ â€sulfanenitrile Intermediate. Angewandte Chemie - International Edition, 2019, 58, 14303-14310.	7.2	57
15	Flow technology for organometallic-mediated synthesis. Journal of Flow Chemistry, 2016, 6, 136-166.	1.2	54
16	Stereospecific β-Lithiation of Oxazolinyloxiranes:  Synthesis of α,β-Epoxy-γ-butyrolactones. Organic Letters, 2002, 4, 1551-1554.	2.4	51
17	Transfer of Electrophilic NH Using Convenient Sources of Ammonia: Direct Synthesis of NH Sulfoximines from Sulfoxides. Angewandte Chemie, 2016, 128, 7319-7323.	1.6	51
18	Highly Chemoselective NH- and O-Transfer to Thiols Using Hypervalent Iodine Reagents: Synthesis of Sulfonimidates and Sulfonamides. Organic Letters, 2018, 20, 2599-2602.	2.4	50

#	Article	IF	CITATIONS
19	Synthesis of 1,2,3,4â€Tetrahydroisoquinolines by Microreactorâ€Mediated Thermal Isomerization of Laterally Lithiated Arylaziridines. Chemistry - A European Journal, 2013, 19, 1872-1876.	1.7	49
20	Flow Microreactor Technology for Taming Highly Reactive Chloroiodomethyllithium Carbenoid: Direct and Chemoselective Synthesis of 1±-Chloroaldehydes. Organic Letters, 2020, 22, 3623-3627.	2.4	47
21	A Stereospecific Synthesis of Oxazolinyloxiranes⊥. Journal of Organic Chemistry, 2001, 66, 3049-3058.	1.7	40
22	Regioselective functionalization of 2-arylazetidines: evaluating the ortho-directing ability of the azetidinyl ring and the α-directing ability of the N-substituent. Chemical Communications, 2014, 50, 1698.	2.2	40
23	A Convenient, Mild, and Green Synthesis of NHâ€Sulfoximines in Flow Reactors. European Journal of Organic Chemistry, 2017, 2017, 6486-6490.	1.2	40
24	Straightforward chemo- and stereoselective fluorocyclopropanation of allylic alcohols: exploiting the electrophilic nature of the not so elusive fluoroiodomethyllithium. Chemical Communications, 2019, 55, 8430-8433.	2.2	38
25	Oxazolinyloxiranyllithium-Mediated Stereoselective Synthesis of α-Epoxy-β-amino Acidsâ€. Organic Letters, 2003, 5, 2723-2726.	2.4	35
26	Lithiation of <i>N</i> -Alkyl-(<i>o</i> -tolyl)aziridine: Stereoselective Synthesis of Isochromans ^{Â\$} . Journal of Organic Chemistry, 2009, 74, 6319-6322.	1.7	34
27	Harnessing the <i>ortho</i> à€Directing Ability of the Azetidine Ring for the Regioselective and Exhaustive Functionalization of Arenes. Chemistry - A European Journal, 2014, 20, 12190-12200.	1.7	33
28	Easy access to constrained peptidomimetics and 2,2-disubstituted azetidines by the unexpected reactivity profile of \hat{l} ±-lithiated N-Boc-azetidines. Chemical Communications, 2015, 51, 15588-15591.	2.2	30
29	A direct and sustainable synthesis of tertiary butyl esters enabled by flow microreactors. Chemical Communications, 2016, 52, 9554-9557.	2.2	28
30	Flow Technology for Telescoped Generation, Lithiation and Electrophilic (C ₃) Functionalization of Highly Strained 1â€Azabicyclo[1.1.0]butanes. Angewandte Chemie - International Edition, 2021, 60, 6395-6399.	7.2	28
31	Continuous Flow Synthesis of Heterocycles: A Recent Update on the Flow Synthesis of Indoles. Molecules, 2020, 25, 3242.	1.7	27
32	The renaissance of strained 1-azabicyclo $[1.1.0]$ butanes as useful reagents for the synthesis of functionalized azetidines. Organic and Biomolecular Chemistry, 2020, 18, 5798-5810.	1.5	27
33	Microreactor-Mediated Organocatalysis: Towards the Development of Sustainable Domino Reactions. Journal of Flow Chemistry, 2013, 3, 29-33.	1.2	27
34	A convenient enantioselective CBS-reduction of arylketones in flow-microreactor systems. Organic and Biomolecular Chemistry, 2016, 14, 4304-4311.	1.5	26
35	Straightforward access to 4-membered sulfurated heterocycles: introducing a strategy for the single and double functionalization of thietane 1-oxide. Organic and Biomolecular Chemistry, 2014, 12, 2180-2184.	1.5	24
36	Stereoselective Synthesis of Novel 4,5-Epoxy-1,2-oxazin-6-ones and $\hat{l}\pm,\hat{l}^2$ -Epoxy- \hat{l}^3 -amino Acids from \hat{l}^2 -Lithiated Oxazolinyloxiranes and Nitrones. Organic Letters, 2006, 8, 4803-4806.	2.4	23

#	Article	IF	CITATIONS
37	Synthesis of Sulfinamidines and Sulfinimidate Esters by Transfer of Nitrogen to Sulfenamides. Organic Letters, 2020, 22, 7129-7134.	2.4	22
38	On the Addition of Lithiated 2-Alkyl- and 2-(Chloroalkyl)-4,5-dihydro-1,3-oxazoles to Nitrones â^ A Mechanistic Investigation. European Journal of Organic Chemistry, 2002, 2002, 2961-2969.	1.2	21
39	Enantioselective carbolithiation of S-alkenyl-N-aryl thiocarbamates: kinetic and thermodynamic control. Organic and Biomolecular Chemistry, 2015, 13, 2330-2340.	1.5	21
40	Regio- and Stereoselective Synthesis of Sulfur-Bearing Four-Membered Heterocycles: Direct Access to 2,4-Disubstituted Thietane 1-Oxides. Journal of Organic Chemistry, 2015, 80, 12201-12211.	1.7	21
41	A greener and efficient access to substituted four- and six-membered sulfur-bearing heterocycles. Organic and Biomolecular Chemistry, 2017, 15, 5000-5015.	1.5	21
42	Development of a Continuous Flow Synthesis of 2-Substituted Azetines and 3-Substituted Azetidines by Using a Common Synthetic Precursor. Journal of Organic Chemistry, 2021, 86, 13943-13954.	1.7	20
43	Nitrogen Dynamics and Reactivity of Chiral Aziridines: Generation of Configurationally Stable Aziridinyllithium Compounds. Chemistry - A European Journal, 2011, 17, 4992-5003.	1.7	19
44	A highly stereoselective synthesis of \hat{l}_{\pm} , \hat{l}_{\pm}^2 -unsaturated oxazolines. Tetrahedron Letters, 2001, 42, 9183-9186.	0.7	18
45	Azetidine–Borane Complexes: Synthesis, Reactivity, and Stereoselective Functionalization. Journal of Organic Chemistry, 2018, 83, 10221-10230.	1.7	18
46	Nâ^'N Bond Formation Using an Iodonitrene as an Umpolung of Ammonia: Straightforward and Chemoselective Synthesis of Hydrazinium Salts. Advanced Synthesis and Catalysis, 2021, 363, 194-199.	2.1	18
47	Sulfinimidate Esters as an Electrophilic Sulfinimidoyl Motif Source: Synthesis of <i>N</i> Protected Sulfilimines from Grignard Reagents. Organic Letters, 2021, 23, 6850-6854.	2.4	17
48	Synthesis of Functionalized Arylaziridines as Potential Antimicrobial Agents. Molecules, 2014, 19, 11505-11519.	1.7	16
49	Synthesis of Sulfonimidamides from Sulfenamides via an Alkoxyâ€aminoâ€î» 6 â€sulfanenitrile Intermediate. Angewandte Chemie, 2019, 131, 14441-14448.	1.6	16
50	Fluoroâ€6ubstituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angewandte Chemie, 2020, 132, 11016-11020.	1.6	16
51	Lithiation of optically active oxazolinyloxiranes: configurational stability. Tetrahedron, 2003, 59, 9707-9712.	1.0	15
52	Flow technology enabled preparation of C3-heterosubstituted 1-azabicyclo[1.1.0]butanes and azetidines: accessing unexplored chemical space in strained heterocyclic chemistry. Chemical Communications, 2022, 58, 6356-6359.	2.2	15
53	One-pot preparation of piperazines by regioselective ring-opening of non-activated arylaziridines. Organic and Biomolecular Chemistry, 2012, 10, 1962.	1.5	13
54	Stereocontrolled lithiation/trapping of chiral 2-alkylideneaziridines: investigation into the role of the aziridine nitrogen stereodynamics. Organic and Biomolecular Chemistry, 2014, 12, 8505-8511.	1.5	13

#	Article	IF	Citations
55	Terminal oxazolinyloxiranes: synthesis, reaction with amines and regioselective \hat{l}^2 -lithiation. Tetrahedron, 2009, 65, 8745-8755.	1.0	12
56	Nitrogen Stereodynamics and Complexation Phenomena as Key Factors in the Deprotonative Dynamic Resolution of Alkylideneaziridines: A Spectroscopic and Computational Study. Journal of Organic Chemistry, 2015, 80, 6411-6418.	1.7	12
57	Sequential \hat{l} ±-lithiation and aerobic oxidation of an arylacetic acid - continuous-flow synthesis of cyclopentyl mandelic acid. Journal of Flow Chemistry, 2018, 8, 109-116.	1.2	12
58	Synthesis of glycosyl sulfoximines by a highly chemo- and stereoselective NH- and O-transfer to thioglycosides. Organic and Biomolecular Chemistry, 2020, 18, 3893-3897.	1.5	12
59	The synthetic versatility of fluoroiodomethane: recent applications as monofluoromethylation platform. Organic and Biomolecular Chemistry, 2022, 20, 4669-4680.	1.5	12
60	Lithiation of 2-(1-Chloroethyl)-2-oxazolines: Synthesis of Substituted Oxazolinyloxiranes and Oxazolinylaziridines. Synthesis, 2001, 2001, 2299-2306.	1.2	11
61	Exploiting structural and conformational effects for a site-selective lithiation of azetidines. Pure and Applied Chemistry, 2016, 88, 631-648.	0.9	11
62	Computational NMR as Useful Tool for Predicting Structure and Stereochemistry of Fourâ€Membered Sulfur Heterocycles. European Journal of Organic Chemistry, 2016, 2016, 3252-3258.	1.2	11
63	Flow Technology for Telescoped Generation, Lithiation and Electrophilic (C 3) Functionalization of Highly Strained 1â€Azabicyclo[1.1.0]butanes. Angewandte Chemie, 2021, 133, 6465-6469.	1.6	11
64	Oxazolinyloxiranyllithium-mediated synthesis of highly strained heterocyclic compounds. Tetrahedron, 2003, 59, 9713-9718.	1.0	9
65	Oxazoline-mediated highly stereoselective synthesis of $\hat{l}\pm,\hat{l}^2$ -substituted- \hat{l}^2 -aminoalkanamides, potential precursors of unnatural \hat{l}^2 2,2,3-amino acids. Tetrahedron Letters, 2007, 48, 8651-8654.	0.7	9
66	Flow microreactor synthesis of 2,2-disubstituted oxetanes via 2-phenyloxetan-2-yl lithium. Open Chemistry, 2016, 14, 377-382.	1.0	9
67	A Study of Grapheneâ€Based Copper Catalysts: Copper(I) Nanoplatelets for Batch and Continuousâ€Flow Applications. Chemistry - an Asian Journal, 2019, 14, 3011-3018.	1.7	9
68	1,3-Dibromo-1,1-difluoro-2-propanone as a Useful Synthon for a Chemoselective Preparation of 4-Bromodifluoromethyl Thiazoles. ACS Omega, 2018, 3, 14841-14848.	1.6	8
69	Functionalization of four-membered cyclic sulfoximines by a convenient lithiation/trapping sequence. Chemistry of Heterocyclic Compounds, 2017, 53, 322-328.	0.6	7
70	Development of a continuous flow synthesis of propranolol: tackling a competitive side reaction. Journal of Flow Chemistry, 2019, 9, 231-236.	1.2	7
71	Stereo- and Enantioselective Addition of Organolithiums to 2-Oxazolinylazetidines as a Synthetic Route to 2-Acylazetidines. Frontiers in Chemistry, 2019, 7, 614.	1.8	7
72	Benchmarking Acidic and Basic Catalysis for a Robust Production of Biofuel from Waste Cooking Oil. Catalysts, 2019, 9, 1050.	1.6	7

#	Article	IF	Citations
73	Restricted rotations and stereodynamics of aziridine-2-methanol derivatives. Tetrahedron, 2011, 67, 9382-9388.	1.0	6
74	Pharmaceutical development of novel lactate-based 6-fluoro-l-DOPA formulations. European Journal of Pharmaceutical Sciences, 2017, 99, 361-368.	1.9	6
75	Use of Hypervalent Iodine in the Synthesis of Isomeric Dihydrooxazoles. Chemistry of Heterocyclic Compounds, 2018, 54, 428-436.	0.6	6
76	Use of azetidine scaffolds in stereoselective transformations (microreview). Chemistry of Heterocyclic Compounds, 2018, 54, 400-402.	0.6	6
77	Asymmetric synthesis of $\hat{l}\pm,\hat{l}^2$ -substituted \hat{l}^2 -aminoalkanamides and stereochemical determination. Tetrahedron Letters, 2007, 48, 8655-8658.	0.7	5
78	2-Arylazetidines as ligands for nicotinic acetylcholine receptors. Chemistry of Heterocyclic Compounds, 2017, 53, 329-334.	0.6	5
79	Dynamic Phenomena and Complexation Effects in the α-Lithiation and Asymmetric Functionalization of Azetidines. Molecules, 2022, 27, 2847.	1.7	4
80	Lithiated oxazolinyloxiranes and oxazolinylaziridines: key players in organic synthesis. Pure and Applied Chemistry, 2014, 86, 913-924.	0.9	3
81	Targeting a Mirabegron precursor by BH3-mediated continuous flow reduction process. Catalysis Today, 2018, 308, 81-85.	2.2	3
82	Lithiated three-membered heterocycles as chiral nucleophiles in the enantioselective synthesis of 1-oxaspiro[2,3]hexanes. Organic and Biomolecular Chemistry, 2021, 19, 1945-1949.	1.5	3
83	Stereoselective Synthesis of Novel 4,5-Epoxy-1,2-oxazin-6-ones and $\hat{l}\pm,\hat{l}^2$ -Epoxy- \hat{l}^3 -amino Acids from \hat{l}^2 -Lithiated Oxazolinyloxiranes and Nitrones. Organic Letters, 2006, 8, 6147-6147.	2.4	2
84	Regio- and stereochemistry of Na-mediated reductive cleavage of alkyl aryl ethers. Tetrahedron: Asymmetry, 2014, 25, 1550-1554.	1.8	2
85	A Practical 11B NMR Evaluation of BH3 Titer in Commercial Solutions. Synthesis, 2017, 49, 1969-1971.	1.2	2
86	Oxazolinyloxiranyllithium-Mediated Stereoselective Synthesis of α-Epoxy-β-amino Acids ChemInform, 2003, 34, no.	0.1	0
87	Oxazolinyloxiranyllithium-Mediated Synthesis of Highly Strained Heterocyclic Compounds ChemInform, 2004, 35, no.	0.1	0
88	Crystal structure of (+)-(2S,3S,1'S)-2-ethyl-N-(1-hydroxymethyl-2-) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 147 Td (Kristallographie - New Crystal Structures, 2008, 223, 481-482.	(methylpro 0.1	opyl)-2-methyl O
89	(S)-Ethyl 2-(tert-butoxycarbonylamino)-3-(2-iodo-4,5-methylenedioxyphenyl)propanoate. MolBank, 2019, 2019, M1049.	0.2	0
90	Azetidines, Azetines and Azetes: Monocyclic., 2021,, 1-1.		0

ARTICLE IF CITATIONS

Crystal structure of (2R*,3R*)-3-amino-2-ethyl-N-(2-hydroxy-1,1-) Tj ETQq1 1 0.784314 rgBT/Overlock 10 Tf 50 747 Td (dimethylethylous constitutions) and Crystal Structures, 2008, 223, 483-484.

Frontispiece: Synthesis and Transformations of NHâ€Sulfoximines. Chemistry - A European Journal, 2021, 27, .