Francesca De Nicola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3442919/publications.pdf

Version: 2024-02-01

32 papers 1,478 citations

430874 18 h-index 31 g-index

33 all docs 33 docs citations

33 times ranked

2812 citing authors

#	Article	IF	CITATIONS
1	î"Np63-Senataxin circuit controls keratinocyte differentiation by promoting the transcriptional termination of epidermal genes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2104718119.	7.1	16
2	Control of replication stress and mitosis in colorectal cancer stem cells through the interplay of PARP1, MRE11 and RAD51. Cell Death and Differentiation, 2021, 28, 2060-2082.	11.2	19
3	KEAP1 and TP53 Frame Genomic, Evolutionary, and Immunologic Subtypes of Lung Adenocarcinoma With Different Sensitivity to Immunotherapy. Journal of Thoracic Oncology, 2021, 16, 2065-2077.	1.1	28
4	Multi-omic approach identifies a transcriptional network coupling innate immune response to proliferation in the blood of COVID-19 cancer patients. Cell Death and Disease, 2021, 12, 1019.	6.3	3
5	Efficacy of immunotherapy in lung cancer with co-occurring mutations in NOTCH and homologous repair genes., 2020, 8, e000946.		13
6	Che-1/AATF-induced transcriptionally active chromatin promotes cell proliferation in multiple myeloma. Blood Advances, 2020, 4, 5616-5630.	5.2	10
7	Che-1/AATF binds to RNA polymerase I machinery and sustains ribosomal RNA gene transcription. Nucleic Acids Research, 2020, 48, 5891-5906.	14.5	14
8	Mutations in the KEAP1-NFE2L2 Pathway Define a Molecular Subset of Rapidly Progressing Lung Adenocarcinoma. Journal of Thoracic Oncology, 2019, 14, 1924-1934.	1.1	60
9	B4GALT1 Is a New Candidate to Maintain the Stemness of Lung Cancer Stem Cells. Journal of Clinical Medicine, 2019, 8, 1928.	2.4	13
10	Combinations of immuno-checkpoint inhibitors predictive biomarkers only marginally improve their individual accuracy. Journal of Translational Medicine, 2019, 17, 131.	4.4	17
11	Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. Journal of Experimental and Clinical Cancer Research, 2019, 38, 78.	8.6	32
12	The clinical significance of PD-L1 in advanced gastric cancer is dependent on <i>ARID1A</i> mutations and ATM expression. Oncolmmunology, 2018, 7, e1457602.	4.6	11
13	Cheâ€1 is targeted by câ€Myc to sustain proliferation in preâ€Bâ€cell acute lymphoblastic leukemia. EMBO Reports, 2018, 19, .	4.5	23
14	Conditionally reprogrammed cells (CRC) methodology does not allow the <i>in vitro</i> expansion of patientâ€derived primary and metastatic lung cancer cells. International Journal of Cancer, 2018, 143, 88-99.	5.1	22
15	CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut, 2018, 67, 903-917.	12.1	64
16	Coexisting YAP expression and TP53 missense mutations delineates a molecular scenario unexpectedly associated with better survival outcomes in advanced gastric cancer. Journal of Translational Medicine, 2018, 16, 247.	4.4	6
17	Deep sequencing and pathway-focused analysis revealed multigene oncodriver signatures predicting survival outcomes in advanced colorectal cancer. Oncogenesis, 2018, 7, 55.	4.9	12
18	Expression of the Hippo transducer TAZ in association with WNT pathway mutations impacts survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy. Journal of Translational Medicine, 2018, 16, 22.	4.4	13

#	Article	IF	CITATIONS
19	DNA damage repair and survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy. International Journal of Cancer, 2017, 140, 2587-2595.	5.1	30
20	Che-1 sustains hypoxic response of colorectal cancer cells by affecting Hif- $1\hat{l}\pm$ stabilization. Journal of Experimental and Clinical Cancer Research, 2017, 36, 32.	8.6	23
21	Deptor transcriptionally regulates endoplasmic reticulum homeostasis in multiple myeloma cells. Oncotarget, 2016, 7, 70546-70558.	1.8	19
22	Cheâ€1â€induced inhibition of <scp>mTOR</scp> pathway enables stressâ€induced autophagy. EMBO Journal, 2015, 34, 1214-1230.	7.8	66
23	VDR primary targets by genome-wide transcriptional profiling. Journal of Steroid Biochemistry and Molecular Biology, 2014, 143, 348-356.	2.5	36
24	Centrosomal Che-1 Protein Is Involved in the Regulation of Mitosis and DNA Damage Response by Mediating Pericentrin (PCNT)-dependent Chk1 Protein Localization. Journal of Biological Chemistry, 2013, 288, 23348-23357.	3.4	16
25	Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13710-13715.	7.1	141
26	Che-1 Promotes Tumor Cell Survival by Sustaining Mutant p53 Transcription and Inhibiting DNA Damage Response Activation. Cancer Cell, 2010, 18, 122-134.	16.8	45
27	Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19975-19979.	7.1	403
28	The Prolyl Isomerase Pin1 Affects Che-1 Stability in Response to Apoptotic DNA Damage. Journal of Biological Chemistry, 2007, 282, 19685-19691.	3.4	40
29	NRAGE associates with the anti-apoptotic factor Che-1 and regulates its degradation to induce cell death. Journal of Cell Science, 2007, 120, 1852-1858.	2.0	55
30	Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint. Cancer Cell, 2006, 10, 473-486.	16.8	106
31	Che-1 Arrests Human Colon Carcinoma Cell Proliferation by Displacing HDAC1 from the p21 Promoter. Journal of Biological Chemistry, 2003, 278, 36496-36504.	3.4	46
32	Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb. Cancer Cell, 2002, 2, 387-399.	16.8	76