
Shavkat U Yuldashev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3442847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simultaneous visible and ultraviolet photoresponse improvement of MoS2/ZnO heterostructure photodetector via direct resonant coupling of Au nanoparticles localized surface plasmon resonance. Optical Materials, 2022, 124, 111997.	3.6	14
2	Self-Nucleated Nonpolar GaN Nanowires with Strong and Enhanced UV Luminescence. Crystal Growth and Design, 2022, 22, 4787-4793.	3.0	3
3	Exotic optoelectronic behaviors in CH3NH3PbCl3 perovskite single crystals: Co-existence of free and bound excitons with structural phase transitions. Applied Physics Letters, 2021, 118, 143301.	3.3	5
4	Positive temperature dynamics of near-band-edge photoluminescence in Nb-doped SrTiO3. Physica B: Condensed Matter, 2020, 595, 412347.	2.7	0
5	Memristive Devices from CuO Nanoparticles. Nanomaterials, 2020, 10, 1677.	4.1	6
6	Critical points in photoluminescence spectra and their relation with phase transition in Nb-doped SrTiO3. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	4
7	Observation of the Spin Seebeck Effect in Bi 2 Te 3 Topological Insulator without an External Magnetic Field. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000004.	2.4	3
8	Effective Modulation of Optical and Photoelectrical Properties of SnS2 Hexagonal Nanoflakes via Zn Incorporation. Nanomaterials, 2019, 9, 924.	4.1	14
9	Effect of Isovalent Doping on the Magnetic Properties of ZnMnO Diluted Magnetic Semiconductors. Journal of the Korean Physical Society, 2019, 74, 168-172.	0.7	0
10	Arrayed CdTeMicrodots and Their Enhanced Photodetectivity via Piezo-Phototronic Effect. Nanomaterials, 2019, 9, 178.	4.1	8
11	Correlation of antibacterial and time resolved photoluminescence studies using bio-reduced silver nanoparticles conjugated with fluorescent quantum dots as a biomarker. Journal of Materials Science: Materials in Electronics, 2019, 30, 6977-6983.	2.2	12
12	Surface induced charge transfer in CuxIn2-xS3 nanostructures and their enhanced photoelectronic and photocatalytic performance. Solar Energy Materials and Solar Cells, 2019, 191, 100-107.	6.2	9
13	Magnetic and optical property studies on cubic Gd ₃ Fe _{5â^'x} Co _x O ₁₂ nanogarnets for spintronics. CrystEngComm, 2018, 20, 2806-2811.	2.6	5
14	Interfacial charge transfer in ZnTe/ZnO nano arrayed heterostructures and their improved photoelectronic properties. Solar Energy Materials and Solar Cells, 2018, 183, 73-81.	6.2	31
15	Band gap engineering of ZnMnO diluted magnetic semiconductor by alloying with ZnS. Journal of Magnetism and Magnetic Materials, 2018, 446, 206-209.	2.3	8
16	Low-temperature photoluminescence of WO3 nanoparticles. Journal of Luminescence, 2018, 195, 344-347.	3.1	10
17	High performance photodiodes based on chemically processed Cu doped SnS2 nanoflakes. Applied Surface Science, 2018, 455, 446-454.	6.1	33
18	Ultrasonic-assisted synthesis of ZnTe nanostructures and their structural, electrochemical and photoelectrical properties. Ultrasonics Sonochemistry, 2017, 39, 414-419.	8.2	20

#	Article	IF	CITATIONS
19	Highly Sensitive Flexible Photodetectors Based on Self-Assembled Tin Monosulfide Nanoflakes with Graphene Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 32142-32150.	8.0	44
20	Critical behavior of the resistivity of GaMnAs near the Curie temperature. Solid State Communications, 2017, 263, 38-41.	1.9	4
21	Electroluminescence in a rectifying graphene/InGaN junction. RSC Advances, 2017, 7, 50853-50857.	3.6	5
22	Magnetic phase transitions in ZnO doped by transition metals. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 559-563.	0.8	0
23	Synthesis and stabilization of cobalt and copper nanoparticles by using Bombyx mori chitosan. Journal of the Korean Physical Society, 2016, 69, 1295-1300.	0.7	2
24	Similar effects of the electric field and annealing on the near-band-edge photoluminescence in ZnO films. Journal of the Korean Physical Society, 2016, 68, 448-451.	0.7	0
25	Enhanced photoelectrical performance of chemically processed SnS2 nanoplates. RSC Advances, 2016, 6, 99631-99637.	3.6	27
26	Blue luminescence and Schottky diode applications of monoclinic HfO ₂ nanostructures. RSC Advances, 2016, 6, 57941-57947.	3.6	12
27	Electrical property studies on chemically processed polypyrolle/aluminum doped ZnO based hybrid heterostructures. Chemical Physics Letters, 2016, 649, 130-134.	2.6	9
28	Thermal Conductivity of ZnO Single Nanowire. Journal of Nanoscience and Nanotechnology, 2016, 16, 1592-1595.	0.9	8
29	Fabrication of PEDOT:PSS/ZnO:S based hybrid heterostructures and their photoelectrical characteristics. Materials Letters, 2016, 170, 199-201.	2.6	10
30	Reversible quenching of luminescence in ZnO films by electric field action. Physica Status Solidi - Rapid Research Letters, 2015, 9, 307-311.	2.4	1
31	Shape controllable synthesis of ZnCdS 1-D nanostructures formed on ITO/glass by using the co-evaporation method. Journal of the Korean Physical Society, 2015, 66, 219-223.	0.7	0
32	Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. RSC Advances, 2015, 5, 10697-10702.	3.6	105
33	Magnetoelectric effect in GaMnAs /P(VDF-TrFE) composite multiferroic nanostructures. Current Applied Physics, 2015, 15, S22-S25.	2.4	1
34	Chemical bath deposited MgxZn1â^'xS(O) thin films and their photoluminescence properties. Journal of Luminescence, 2015, 168, 98-101.	3.1	5
35	Chemically-derived CuO/In2O3-based nanocomposite for diode applications. CrystEngComm, 2015, 17, 5932-5939.	2.6	16
36	Near-band-edge photoluminescence from ZnO film: Negative thermal quenching and role of adsorbed oxygen. Journal of the Korean Physical Society, 2014, 64, 1-5.	0.7	3

Shavkat U Yuldashev

#	Article	IF	CITATIONS
37	Fabrication of nanostructured ZnO thin films using self-assembled organic molecule templates and optical transitions. Thin Solid Films, 2014, 562, 269-273.	1.8	2
38	Optical and ferromagnetic properties of Cr doped ZnO nanorods. Applied Surface Science, 2014, 315, 124-130.	6.1	9
39	Magnetic Phase Transitions in Zn1â^x Mn x O. Journal of the Korean Physical Society, 2014, 64, 1457-1460.	0.7	1
40	Ferromagnetic states of p-type silicon doped with Mn. Journal of the Korean Physical Society, 2014, 64, 1461-1465.	0.7	7
41	Effects of near-surface defects on the optical, electrical and magnetic properties of ZnO films. Journal of the Korean Physical Society, 2014, 64, 1590-1594.	0.7	Ο
42	Electrical and optical properties of air-stable, iodine-doped natural cotton fibers. Journal of the Korean Physical Society, 2014, 64, 561-566.	0.7	1
43	Structure and magnetic properties of ZnO:Cr prepared by Cr ion implantation into ZnO crystals. Wuhan University Journal of Natural Sciences, 2013, 18, 283-288.	0.4	1
44	Influence of annealing temperature on magnetic properties of InFeP prepared by ion implantation. Surface and Coatings Technology, 2013, 228, S233-S236.	4.8	0
45	Memristive behavior of ZnO/NiO stacked heterostructure. Microelectronic Engineering, 2013, 112, 31-34.	2.4	18
46	Homojunction p-n photodiodes based on As-doped single ZnO nanowire. , 2013, , .		1
47	The role of zinc vacancies in bipolar resistance switching of Ag/ZnO/Pt memory structures. Nanotechnology, 2012, 23, 375201.	2.6	9
48	Fabrication of aluminium doped zinc oxide (AZO) transparent conductive oxide by ultrasonic spray pyrolysis. Current Applied Physics, 2012, 12, S56-S58.	2.4	56
49	Thermal properties of manganese-doped ZnO polycrystalline films. Physics of the Solid State, 2012, 54, 1957-1960.	0.6	0
50	Functional hybrid materials derived from natural cellulose. Journal of the Korean Physical Society, 2012, 60, 1526-1530.	0.7	4
51	Influence of MnO clusters on resistance switching behaviors in ZnO/n-Si structures. Journal of the Korean Physical Society, 2012, 60, 1531-1534.	0.7	0
52	Growth of ZnO and ZnMgO nanorods on Si substrates by using ultrasonic spray pyrolysis. Journal of the Korean Physical Society, 2012, 60, 1539-1542.	0.7	7
53	Photovoltaic device on a single ZnO nanowire p–n homojunction. Nanotechnology, 2012, 23, 115401.	2.6	42
54	Study of the photoluminescence emission line at 3.33 eV in ZnO films. Journal of Applied Physics, 2012, 112, .	2.5	32

#	Article	IF	CITATIONS
55	Heat transport in ZnO/PMMA nanocomposites. Physics of the Solid State, 2012, 54, 1514-1517.	0.6	1
56	Crossover critical behavior of Ga <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow /><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^²</mml:mo><mml:mi>x</mml:mi></mml:mrow>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>x</mml:mi></mml:mrow </mml:msub><mml:mrow /><mml:mi>x</mml:mi>x</mml:mrow </mml:math> As. Physical Review B, 2012, 85, .	ub>< \$:2 ml:n	nat b> Mn <mm< td=""></mm<>
57	Study of the thermal conductivity of ZnO nanowires/PMMA composites. Journal of the Korean Physical Society, 2012, 60, 1513-1516.	0.7	6
58	Organic photodiodes on the base of cotton fibers/polymer composite. Journal of Applied Physics, 2011, 110, .	2.5	3
59	Critical behavior of Ga[sub 1-x]Mn[sub x]As. AIP Conference Proceedings, 2011, , .	0.4	ο
60	Study of Weak Ferromagnetism in Zn[sub 1-x]Co[sub x]O. AIP Conference Proceedings, 2011, , .	0.4	1
61	Dependence of Resistance Switching Voltage on the Potential Barrier in ZnO Thin Films. AIP Conference Proceedings, 2011, , .	0.4	2
62	ZnO films grown on cotton fibers surface at low temperature by a simple two-step process. Materials Letters, 2011, 65, 1316-1318.	2.6	23
63	Study on electrical transport and photoconductivity in iodine-doped cellulose fibers. Journal of Materials Science, 2011, 46, 896-901.	3.7	6
64	Photoluminescence study of the surface modified and MEH-PPV coated cotton fibers. Journal of Luminescence, 2011, 131, 301-305.	3.1	2
65	Resistance states dependence of photoluminescence in Ag/ZnO/Pt structures. Applied Physics Letters, 2011, 99, .	3.3	7
66	Thermal Conductivity of ZnO Nanowires Embedded in Poly(methyl methacrylate) Matrix. Applied Physics Express, 2011, 4, 015001.	2.4	8
67	Correlation between Resistance Switching States and Photoluminescence Emission in ZnO Films. Applied Physics Express, 2011, 4, 075801.	2.4	2
68	Study of Ga1-xMnxAs Critical Behavior by Using Thermal Diffusivity. Journal of the Korean Physical Society, 2011, 59, 431-434.	0.7	2
69	Electrical and Photoelectrical Characteristics of the ZnO/Organic Hybrid Heterostructure. Journal of the Korean Physical Society, 2011, 59, 482-484.	0.7	4
70	Specific Heat Study of GaMnAs. Applied Physics Express, 2010, 3, 073005.	2.4	8
71	Thermal properties of semiconductor zinc oxide nanostructures. Journal of Engineering Physics and Thermophysics, 2010, 83, 863-868.	0.6	11
72	Critical behavior of Zn1â^'xMnxO doped by nitrogen. Journal of Applied Physics, 2009, 105, 113920.	2.5	5

Shavkat U Yuldashev

#	Article	IF	CITATIONS
73	Excitation Intensity Dependent Studies of Photoluminescence from ZnO Nanocrystals Deposited on Different Substrates. Japanese Journal of Applied Physics, 2009, 48, 115004.	1.5	4
74	Resistance States and Photoluminescence in Anodic Oxide Alumina Films. Electrochemical and Solid-State Letters, 2009, 12, G47.	2.2	0
75	Optical and magneto-optical properties of thin Zn1â^'xMnxO films doped by nitrogen. Physica B: Condensed Matter, 2009, 404, 5266-5268.	2.7	4
76	Nonpolar Resistance Switching in Anodic Oxide Alumina Films. Japanese Journal of Applied Physics, 2009, 48, 070207.	1.5	5
77	White Light Emission from ZnO/Zn0.9Mg0.1O Heterostructures Grown on Si Substrates. Japanese Journal of Applied Physics, 2008, 47, 133-135.	1.5	6
78	Magnetic phase transition in Zn1â^'xMnxO doped by nitrogen. Applied Physics Letters, 2008, 93, 092503.	3.3	7
79	Magnetic and Optical Properties of Zn1-xMnxO Thin Films Prepared by Using Ultrasonic Spray Pyrolysis. Journal of the Korean Physical Society, 2008, 53, 192-195.	0.7	5
80	Electroluminescence of n-Zn1-xMgxO/ZnO/p-Zn1-xMgxO Heterostructures Grown on Si Substrates. Journal of the Korean Physical Society, 2008, 53, 2913-2916.	0.7	3
81	Electroluminescence of ZnO-based p-i-n structures fabricated by the ultrasound-spraying method. Doklady Physics, 2007, 52, 300-302.	0.7	0
82	Electrical and optical properties of ZnO thin films grown on Si substrates. Journal of Applied Physics, 2006, 100, 013704.	2.5	27
83	Photoluminescent properties of ZnO nanoparticles in ultraviolet opal infiltrated by chemical deposition. Journal of Crystal Growth, 2006, 286, 300-305.	1.5	4
84	Deep level emission of ZnO nanoparticles deposited inside UV opal. Optics Communications, 2006, 259, 378-384.	2.1	24
85	New properties of cadmium sulfide nanostructures. Doklady Physics, 2006, 51, 588-590.	0.7	1
86	Magnetotransport properties of zinc-blende-structured MnAs films with half-metallic characteristics. Applied Physics Letters, 2006, 89, 112517.	3.3	15
87	Dominant ultraviolet-blue photoluminescence of ZnO embedded into synthetic opal. Journal of Luminescence, 2005, 114, 118-124.	3.1	13
88	Effect of photonic band-gap on photoluminescence of ZnO deposited inside the green synthetic opal. Optics Communications, 2005, 250, 111-119.	2.1	19
89	Correlation of magnetic property with electrical transport property for ferromagnetic (Zn1â^'xMnx)O thin films. Journal of Applied Physics, 2005, 98, 123905.	2.5	8
90	Green Photoluminescence Suppression in ZnO Embedded in Porous Opal. Japanese Journal of Applied Physics, 2004, 43, 6101-6103.	1.5	9

SHAVKAT U YULDASHEV

#	Article	IF	CITATIONS
91	Effect of Interlayer Exchange Coupling on the Curie Temperature in Ga1-xMnxAs Trilayer Structures. Japanese Journal of Applied Physics, 2004, 43, 2093-2096.	1.5	2
92	Anomalous Hall effect in insulatingGa1â^'xMnxAs. Physical Review B, 2004, 70, .	3.2	30
93	Ferromagnetic behavior of p-type GaN epilayer implanted with Fe+ ions. Journal of Applied Physics, 2004, 95, 761-763.	2.5	36
94	Suppression of the green photoluminescence band in ZnO embedded into porous opal by spray pyrolysis. Journal of Luminescence, 2004, 109, 25-29.	3.1	25
95	Growth of Ferromagnetic Semiconducting Si:Mn Film by Vacuum Evaporation Method. Chemistry of Materials, 2003, 15, 3964-3965.	6.7	27
96	Effect of additional nonmagnetic acceptor doping on the resistivity peak and the Curie temperature of Ga1â^'xMnxAs epitaxial layers. Applied Physics Letters, 2003, 82, 1206-1208.	3.3	53
97	Diluted magnetic semiconductor of p-type GaN epilayers implanted with Mn+ ions. Journal of Applied Physics, 2003, 93, 1546-1549.	2.5	26
98	Electrical and Optical Properties of ZnO Films Grown on GaAs Substrates. Japanese Journal of Applied Physics, 2003, 42, 3333-3336.	1.5	15
99	Magnetoresistance of Ga1-xMnxAs Epitaxial Layers Doped by Be. Japanese Journal of Applied Physics, 2003, 42, 6256-6259.	1.5	6
100	Formation and Characterization of (Zn1-xMnx)O Diluted Magnetic Semiconductors Grown on (0001) Al2O3Substrates. Japanese Journal of Applied Physics, 2003, 42, 7217-7220.	1.5	16
101	Optical and magnetic measurements of p-type GaN epilayers implanted with Mn+ ions. Applied Physics Letters, 2002, 81, 1845-1847.	3.3	78
102	Enhanced positive magnetoresistance effect in GaAs with nanoscale magnetic clusters. Journal of Applied Physics, 2001, 90, 3004-3006.	2.5	40
103	The study of hydrogenation effect for the deep levels in GaN epilayers. Current Applied Physics, 2001, 1, 191-195.	2.4	5
104	Photo-enhanced Magnetoresistance Effect in GaAs with Nanoscale Magnetic Clusters. Japanese Journal of Applied Physics, 2001, 40, 3082-3084.	1.5	9
105	Effect of photoelectrochemical oxidation on properties of GaN epilayers grown by molecular beam epitaxy. Applied Physics Letters, 2001, 78, 1309-1311.	3.3	18
106	Effects of hydrogenation and annealing on the shallow donor-band recombination in In-doped CdTe epitaxial layers grown on p-CdTe (211) substrates. Journal of Physics and Chemistry of Solids, 2000, 61, 711-718.	4.0	7
107	Annealing Effect on Passivated Deep Levels in GaN Epilayers. Japanese Journal of Applied Physics, 2000, 39, 5044-5047.	1.5	2
108	Effects of Hydrogenation and Annealing on the Deep Levels in GaN Epilayers Grown on Sapphire Substrates. Japanese Journal of Applied Physics, 2000, 39, L25-L27.	1.5	5

SHAVKAT U YULDASHEV

#	Article	IF	CITATIONS
109	Effect of the band-tail states on the exciton peaks in GaN epilayers grown on sapphire substrates. Journal of Applied Physics, 2000, 88, 790-793.	2.5	10
110	Surface passivation by sulfur treatment of undoped p-CdTe(100). Journal of Applied Physics, 2000, 88, 2013-2015.	2.5	24
111	Hydrogenation and annealing effects on the trapping times of the minority carriers in In-doped CdTe epitaxial layers grown on p-CdTe (211) substrates. Journal of Applied Physics, 1999, 86, 859-862.	2.5	4
112	The behavior of the shallow donor-band recombination in In-doped CdTe epitaxial films grown on p-CdTe (211) substrates. Solid State Communications, 1999, 110, 413-418.	1.9	3
113	Deep levels in GaN epilayers grown on sapphire substrates. Solid State Communications, 1999, 112, 637-642.	1.9	8
114	Studies on sensitivity of porous silicon surfaces to environmental gases. Journal of Materials Engineering and Performance, 1997, 6, 161-164.	2.5	2
115	Magnetophotoluminescence of MBE-grown InSb and InAs. Semiconductor Science and Technology, 1993, 8, 276-282.	2.0	12