Alexander Karlas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3442645/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Meta- and Orthogonal Integration of Influenza "OMICs―Data Defines a Role for UBR4 in Virus Budding. Cell Host and Microbe, 2015, 18, 723-735.	5.1	868
2	Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature, 2010, 463, 818-822.	13.7	629
3	Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature, 2009, 457, 731-735.	13.7	254
4	RORÎ ³ t+ Innate Lymphoid Cells Acquire a Proinflammatory Program upon Engagement of the Activating Receptor NKp44. Immunity, 2013, 38, 1223-1235.	6.6	166
5	ALPK1- and TIFA-Dependent Innate Immune Response Triggered by the Helicobacter pylori Type IV Secretion System. Cell Reports, 2017, 20, 2384-2395.	2.9	139
6	Rab6 and Rab11 Regulate Chlamydia trachomatis Development and Golgin-84-Dependent Golgi Fragmentation. PLoS Pathogens, 2009, 5, e1000615.	2.1	121
7	Conserved roles of Sam50 and metaxins in VDAC biogenesis. EMBO Reports, 2007, 8, 576-582.	2.0	97
8	Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology, 2003, 314, 125-133.	1.1	95
9	Evidence for a crucial role of a host non-coding RNA in influenza A virus replication. RNA Biology, 2014, 11, 66-75.	1.5	90
10	Helicobacter pylori Induces miR-155 in T Cells in a cAMP-Foxp3-Dependent Manner. PLoS ONE, 2010, 5, e9500.	1.1	89
11	Porcine endogenous retroviruses: no infection in patients treated with a bioreactor based on porcine liver cells. Journal of Clinical Virology, 2003, 28, 141-154.	1.6	88
12	Pulmonary Gene Silencing in Transgenic EGFP Mice Using Aerosolised Chitosan/siRNA Nanoparticles. Pharmaceutical Research, 2010, 27, 2520-2527.	1.7	87
13	Cigarette smoke extract induces prolonged endoplasmic reticulum stress and autophagic cell death in human umbilical vein endothelial cells. Cardiovascular Research, 2011, 92, 141-148.	1.8	83
14	The Helicobacter pylori CagA protein disrupts matrix adhesion of gastric epithelial cells by dephosphorylation of vinculin. Cellular Microbiology, 2007, 9, 1148-1161.	1.1	80
15	A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nature Communications, 2016, 7, 11320.	5.8	72
16	Inhibition of porcine endogenous retroviruses by RNA interference: increasing the safety of xenotransplantation. Virology, 2004, 325, 18-23.	1.1	71
17	Autophagy-independent function of MAP-LC3 during intracellular propagation of <i>Chlamydia trachomatis</i> . Autophagy, 2011, 7, 814-828.	4.3	56
18	RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathogens, 2019, 15, e1007601.	2.1	26

ALEXANDER KARLAS

#	Article	IF	CITATIONS
19	Analysis of pig-to-human porcine endogenous retrovirus transmission in a triple-species kidney xenotransplantation model. Transplant International, 2005, 17, 848-858.	0.8	23
20	Porcine Endogenous Retroviruses PERV-A and PERV-B Infect neither Mouse Cells in vitro nor SCID Mice in vivo. Intervirology, 2005, 48, 167-173.	1.2	21
21	Regulation of influenza A virus mRNA splicing by CLK1. Antiviral Research, 2019, 168, 187-196.	1.9	21
22	Dynaminâ€mediated lipid acquisition is essential for <scp><i>C</i></scp> <i>hlamydia trachomatis</i> development. Molecular Microbiology, 2014, 94, 186-201.	1.2	14
23	Long-Term Culture of Distal Airway Epithelial Cells Allows Differentiation Towards Alveolar Epithelial Cells Suited for Influenza Virus Studies. EBioMedicine, 2018, 33, 230-241.	2.7	14
24	Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells. Molecular and Cellular Proteomics, 2017, 16, 728-742.	2.5	13
25	Model-based analysis of influenza A virus replication in genetically engineered cell lines elucidates the impact of host cell factors on key kinetic parameters of virus growth. PLoS Computational Biology, 2019, 15, e1006944.	1.5	10
26	Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells. Virology, 2016, 492, 118-129.	1.1	8
27	Genome-Wide RNAi Screen for Viral Replication in Mammalian Cell Culture. Methods in Molecular Biology, 2011, 721, 383-395.	0.4	8
28	Expression, purification and crystallization of CLK1 kinase – A potential target for antiviral therapy. Protein Expression and Purification, 2020, 176, 105742.	0.6	6
29	Genome-Wide RNAi Screening to Identify Human Host Factors Crucial for Influenza Virus Replication. Advances in Delivery Science and Technology, 2013, , 243-257.	0.4	О