
Antonio Lama-Muñoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3442504/publications.pdf

Version: 2024-02-01

5

#	Article	IF	CITATIONS
1	Production of renewable products from brewery spent grains. , 2021, , 305-347.		1
2	Inhibitory Effect of Olive Phenolic Compounds Isolated from Olive Oil By-Product on Melanosis of Shrimps. Antioxidants, 2021, 10, 728.	5.1	4
3	Characterization of the lignocellulosic and sugars composition of different olive leaves cultivars. Food Chemistry, 2020, 329, 127153.	8.2	13
4	Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chemistry, 2020, 320, 126626.	8.2	87
5	How Cultivar and Extraction Conditions Affect Antioxidants Type and Extractability for Olive Leaves Valorization. ACS Sustainable Chemistry and Engineering, 2020, 8, 5107-5118.	6.7	31
6	Valorization of olive mill leaves through ultrasound-assisted extraction. Food Chemistry, 2020, 314, 126218.	8.2	48
7	Synergistic effect of 3,4-dihydroxyphenylglycol with hydroxytyrosol and α-tocopherol on the Rancimat oxidative stability of vegetable oils. Innovative Food Science and Emerging Technologies, 2019, 51, 100-106.	5.6	6
8	Optimization of Oleuropein and Luteolin-7-O-Glucoside Extraction from Olive Leaves by Ultrasound-Assisted Technology. Energies, 2019, 12, 2486.	3.1	41
9	Integrated Process for Sequential Extraction of Bioactive Phenolic Compounds and Proteins from Mill and Field Olive Leaves and Effects on the Lignocellulosic Profile. Foods, 2019, 8, 531.	4.3	21
10	The use of industrial thermal techniques to improve the bioactive compounds extraction and the olive oil solid waste utilization. Innovative Food Science and Emerging Technologies, 2019, 55, 11-17.	5.6	27
11	Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chemistry, 2019, 293, 161-168.	8.2	62
12	Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. Bioresource Technology, 2019, 280, 459-477.	9.6	137
13	Complexation of hydroxytyrosol and 3,4-dihydroxyphenylglycol with pectin and their potential use for colon targeting. Carbohydrate Polymers, 2017, 163, 292-300.	10.2	25
14	Influence of pH on the antioxidant phenols solubilised from hydrothermally treated olive oil by-product (alperujo). Food Chemistry, 2017, 219, 339-345.	8.2	19
15	Obtaining sugars and natural antioxidants from olive leaves by steam-explosion. Food Chemistry, 2016, 210, 457-465.	8.2	63
16	Antioxidant phenolic extracts obtained from secondary Tunisian date varieties (Phoenix dactylifera) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf
17	Isolation and identification of minor secoiridoids and phenolic components from thermally treated olive oil by-products. Food Chemistry, 2015, 187, 166-173.	8.2	26

Novel pectin present in new olive mill wastewater with similar emulsifying and better biological properties than citrus pectin. Food Hydrocolloids, 2015, 50, 237-246. 18 10.7 47

Antonio Lama-Muñoz

#	Article	lF	CITATIONS
19	Pectin extracted from thermally treated olive oil by-products: Characterization, physico-chemical properties, inÂvitro bile acid andÂglucose binding. Food Hydrocolloids, 2015, 43, 311-321.	10.7	74
20	Low energy-demanding recovery of antioxidants and sugars from olive stones as preliminary steps in the biorefinery context. Industrial Crops and Products, 2014, 60, 30-38.	5.2	33
21	Biodiesel production from olive–pomace oil of steam-treated alperujo. Biomass and Bioenergy, 2014, 67, 443-450.	5.7	34
22	Properties of Lignin, Cellulose, and Hemicelluloses Isolated from Olive Cake and Olive Stones: Binding of Water, Oil, Bile Acids, and Glucose. Journal of Agricultural and Food Chemistry, 2014, 62, 8973-8981.	5.2	59
23	Chemical characterization and properties of a polymeric phenolic fraction obtained from olive oil waste. Food Research International, 2013, 54, 2122-2129.	6.2	22
24	Phenolic extract obtained from steam-treated olive oil waste: Characterization and antioxidant activity. LWT - Food Science and Technology, 2013, 54, 114-124.	5.2	26
25	Isolation and Identification of Phenolic Glucosides from Thermally Treated Olive Oil Byproducts. Journal of Agricultural and Food Chemistry, 2013, 61, 1235-1248.	5.2	34
26	A study of the precursors of the natural antioxidant phenol 3,4-dihydroxyphenylglycol in olive oil waste. Food Chemistry, 2013, 140, 154-160.	8.2	22
27	New Phenolic Compounds Hydrothermally Extracted from the Olive Oil Byproduct Alperujo and Their Antioxidative Activities. Journal of Agricultural and Food Chemistry, 2012, 60, 1175-1186.	5.2	93
28	Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocolloids, 2012, 28, 92-104.	10.7	76
29	New Hydrothermal Treatment of Alperujo Enhances the Content of Bioactive Minor Components in Crude Pomace Olive Oil. Journal of Agricultural and Food Chemistry, 2011, 59, 1115-1123.	5.2	25
30	Effect of a New Thermal Treatment in Combination with Saprobic Fungal Incubation on the Phytotoxicity Level of Alperujo. Journal of Agricultural and Food Chemistry, 2011, 59, 3239-3245.	5.2	9
31	Isolation of a powerful antioxidant from Olea europaea fruit-mill waste: 3,4-Dihydroxyphenylglycol. LWT - Food Science and Technology, 2009, 42, 483-490.	5.2	27
32	3,4-Dihydroxyphenylglycol (DHPG): An Important Phenolic Compound Present in Natural Table Olives. Journal of Agricultural and Food Chemistry, 2009, 57, 6298-6304.	5.2	29
33	Olive stone an attractive source of bioactive and valuable compounds. Bioresource Technology, 2008, 99, 5261-5269.	9.6	274
34	New Olive-Pomace Oil Improved by Hydrothermal Pre-Treatments. , 0, , .		2
35	Asparagus Fibres as Reinforcing Materials for Developing 100% Biodegradable Packaging. , 0, , 224-228.		Ο