List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3441589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variational calculations of fermion second-order reduced density matrices by semidefinite programming algorithm. Journal of Chemical Physics, 2001, 114, 8282-8292.	1.2	239
2	Double-core-hole spectroscopy for chemical analysis with an intense X-ray femtosecond laser. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16912-16915.	3.3	165
3	D–Dâ~'Ĩ€â€"A-Type Organic Dyes for Dye-Sensitized Solar Cells with a Potential for Direct Electron Injection and a High Extinction Coefficient: Synthesis, Characterization, and Theoretical Investigation. Journal of Physical Chemistry C, 2012, 116, 25653-25663.	1.5	153
4	Low-Temperature Carbon–Chlorine Bond Activation by Bimetallic Gold/Palladium Alloy Nanoclusters: An Application to Ullmann Coupling. Journal of the American Chemical Society, 2012, 134, 20250-20253.	6.6	133
5	Vibrationally resolved O 1s photoelectron spectrum of water. Chemical Physics Letters, 2003, 380, 647-653.	1.2	119
6	Exploring excited states using Time Dependent Density Functional Theory and density-based indexes. Coordination Chemistry Reviews, 2015, 304-305, 166-178.	9.5	118
7	Molecular double core hole electron spectroscopy for chemical analysis. Journal of Chemical Physics, 2010, 132, .	1.2	111
8	Light-driven molecular switch for reconfigurable spin filters. Nature Communications, 2019, 10, 2455.	5.8	109
9	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mi>NH</mml:mi><mml:mn>3</mml:mn></mml:msub> and <mm xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>CH</mml:mi><mml:mn>4</mml:mn></mml:msub>Molecule</mm 	l:math 2.9	105
10	Physical Review Letters, 2010, 105, 213005. Electronic excitation spectra of furan and pyrrole: Revisited by the symmetry adapted cluster–configuration interaction method. Journal of Chemical Physics, 2000, 113, 7853-7866.	1.2	88
11	Electronic excitations of the green fluorescent protein chromophore in its protonation states: SAC/SAC-CI study. Journal of Computational Chemistry, 2003, 24, 1421-1431.	1.5	83
12	Density matrix variational theory: Application to the potential energy surfaces and strongly correlated systems. Journal of Chemical Physics, 2002, 116, 5432-5439.	1.2	79
13	A Theoretical Investigation on CO Oxidation by Singleâ€Atom Catalysts M ₁ /γâ€Al ₂ O ₃ (M=Pd, Fe, Co, and Ni). ChemCatChem, 2017, 9, 1222-122	9 ^{1.8}	76
14	Symmetry-adapted cluster and symmetry-adapted cluster-configuration interaction method in the polarizable continuum model: Theory of the solvent effect on the electronic excitation of molecules in solution. Journal of Chemical Physics, 2010, 133, 024104.	1.2	71
15	Outer- and inner-valence ionization spectra of N2 and CO:. Chemical Physics Letters, 1998, 282, 347-354.	1.2	65
16	Multiconfiguration timeâ€dependent Hartree (MCTDH) study on rotational and diffractive inelastic moleculeâ€surface scattering. Journal of Chemical Physics, 1996, 105, 8865-8877.	1.2	61
17	Excited and Ionized States of p-Benzoquinone and Its Anion Radical:  SACâ^'CI Theoretical Study. Journal of Physical Chemistry A, 2002, 106, 3838-3849	1.1	61
18	CAP/SAC-CI method for calculating resonance states of metastable anions. Chemical Physics Letters, 2012, 537, 107-112.	1.2	59

#	Article	IF	CITATIONS
19	Symmetry-dependent vibrational excitation in N 1s photoionization of N2: Experiment and theory. Journal of Chemical Physics, 2006, 124, 124311.	1.2	57
20	Excited-State Geometries of Heteroaromatic Compounds: A Comparative TD-DFT and SAC-CI Study. Journal of Chemical Theory and Computation, 2013, 9, 2368-2379.	2.3	57
21	Cluster modeling of metal oxides: how to cut out a cluster?. Chemical Physics Letters, 1998, 291, 445-452.	1.2	54
22	Singly and doubly excited states of butadiene, acrolein, and glyoxal: Geometries and electronic spectra. Journal of Chemical Physics, 2006, 125, 014316.	1.2	54
23	Lewis Acid Catalysis of Nb ₂ O ₅ for Reactions of Carboxylic Acid Derivatives in the Presence of Basic Inhibitors. ChemCatChem, 2019, 11, 383-396.	1.8	53
24	Excited and ionized states of aniline: Symmetry adapted cluster configuration interaction theoretical study. Journal of Chemical Physics, 2002, 117, 2045-2052.	1.2	52
25	Nonequilibrium solvation for vertical photoemission and photoabsorption processes using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model. Journal of Chemical Physics, 2011, 134, 104109.	1.2	51
26	Elucidating Electronic Transitions from σ Orbitals of Liquid <i>n-</i> and Branched Alkanes by Far-Ultraviolet Spectroscopy and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2012, 116, 11957-11964.	1.1	51
27	Theoretical fine spectroscopy with symmetry adapted cluster–configuration interaction general-R method: First-row K-shell ionizations and their satellites. Journal of Chemical Physics, 2005, 122, 014304.	1.2	50
28	Direct oxidation of methane to methanol on Fe–O modified graphene. RSC Advances, 2014, 4, 12572-12578.	1.7	50
29	Electronic excitation spectrum of thiophene studied by symmetry-adapted cluster configuration interaction method. Journal of Chemical Physics, 2001, 114, 842.	1.2	49
30	Theoretical study on the excited and ionized states of titanium tetrachloride. Journal of Chemical Physics, 1992, 97, 2561-2570.	1.2	47
31	Theoretical fine spectroscopy with symmetry-adapted-cluster configuration-interaction method: Outer- and inner-valence ionization spectra of furan, pyrrole, and thiophene. Journal of Chemical Physics, 2005, 122, 234319.	1.2	47
32	A Mechanism for the Palladium-Catalyzed Regioselective Silaboration of Allene: A Theoretical Study. Organometallics, 2008, 27, 1736-1742.	1.1	47
33	Electronic excitation and ionization spectra of azabenzenes: Pyridine revisited by the symmetry-adapted cluster configuration interaction method. Journal of Chemical Physics, 2001, 114, 5117-5123.	1.2	46
34	Active-space symmetry-adapted-cluster configuration-interaction and equation-of-motion coupled-cluster methods for high accuracy calculations of potential energy surfaces of radicals. Journal of Chemical Physics, 2007, 126, 164111.	1.2	45
35	Nickel-catalyzed coupling reaction of alkyl halides with aryl Grignard reagents in the presence of 1,3-butadiene: mechanistic studies of four-component coupling and competing cross-coupling reactions. Chemical Science, 2018, 9, 2195-2211.	3.7	45
36	Symmetry adapted clusterâ€configuration interaction study on the excited and ionized states of TiBr4 and Til4. Journal of Chemical Physics, 1994, 101, 7658-7671.	1.2	44

#	Article	IF	CITATIONS
37	Theoretical study on the outer- and inner-valence ionization spectra of H2O, H2S and H2Se using the SAC-CI general-R method. Journal of Chemical Physics, 2001, 114, 8990-8999.	1.2	44
38	Double core–hole electron spectroscopy for open-shell molecules: Theoretical perspective. Chemical Physics Letters, 2010, 496, 217-222.	1.2	44
39	Metal–Porphyrin: A Potential Catalyst for Direct Decomposition of N ₂ 0 by Theoretical Reaction Mechanism Investigation. Environmental Science & Technology, 2014, 48, 7101-7110.	4.6	44
40	Symmetryâ€adapted cluster–configuration interaction method applied to highâ€spin multiplicity. Journal of Chemical Physics, 1993, 98, 7179-7184.	1.2	43
41	Complex Absorbing Potentials with Voronoi Isosurfaces Wrapping Perfectly around Molecules. Journal of Chemical Theory and Computation, 2015, 11, 4627-4633.	2.3	43
42	Vibrationally resolved C and O 1s photoelectron spectra of carbon dioxide. Journal of Electron Spectroscopy and Related Phenomena, 2007, 155, 54-57.	0.8	41
43	Electronic transitions in liquid amides studied by using attenuated total reflection far-ultraviolet spectroscopy and quantum chemical calculations. Journal of Chemical Physics, 2013, 139, 154301.	1.2	41
44	Aerobic oxidation of methanol to formic acid on Au20â^': a theoretical study on the reaction mechanism. Physical Chemistry Chemical Physics, 2012, 14, 3103.	1.3	40
45	C–Cl Bond Activation on Au/Pd Bimetallic Nanocatalysts Studied by Density Functional Theory and Genetic Algorithm Calculations. Journal of Physical Chemistry C, 2014, 118, 22188-22196.	1.5	39
46	Photoisomerization and Proton-Coupled Electron Transfer (PCET) Promoted Water Oxidation by Mononuclear Cyclometalated Ruthenium Catalysts. Inorganic Chemistry, 2012, 51, 5386-5392.	1.9	38
47	(2 + 2) Cycloaddition of Benzyne to Endohedral Metallofullerenes M ₃ N@C ₈₀ (M = Sc, Y): A Rotating-Intermediate Mechanism. Journal of the American Chemical Society, 2015, 137, 6820-6828.	6.6	38
48	Methane activation on Fe- and FeO-embedded graphene and boron nitride sheet: role of atomic defects in catalytic activities. RSC Advances, 2015, 5, 97918-97927.	1.7	38
49	Analytical energy gradients of the excited, ionized and electron-attached states calculated by the SAC-CI general-R method. Chemical Physics Letters, 2001, 347, 493-498.	1.2	37
50	Structure of the exact wave function. V. Iterative configuration interaction method for molecular systems within finite basis. Journal of Chemical Physics, 2002, 117, 9-12.	1.2	37
51	Iterative CI general singles and doubles (ICIGSD) method for calculating the exact wave functions of the ground and excited states of molecules. Journal of Chemical Physics, 2005, 122, 194108.	1.2	37
52	Excited states and electronic spectra of extended tetraazaporphyrins. Journal of Chemical Physics, 2010, 133, 144316.	1.2	37
53	Rydberg and ï€â€'´ï€* Transitions in Film Surfaces of Various Kinds of Nylons Studied by Attenuated Total Reflection Far-Ultraviolet Spectroscopy and Quantum Chemical Calculations: Peak Shifts in the Spectra and Their Relation to Nylon Structure and Hydrogen Bondings. Journal of Physical Chemistry B. 2014, 118, 11855-11861.	1.2	37
54	Enantioseparation and chiral induction in Ag ₂₉ nanoclusters with intrinsic chirality. Chemical Science, 2020, 11, 2394-2400.	3.7	37

#	Article	IF	CITATIONS
55	Experimental and theoretical study on the excited-state dynamics of ortho-, meta-, and para-methoxy methylcinnamate. Journal of Chemical Physics, 2014, 141, 244313.	1.2	36
56	Benchmark Study on the Triplet Excited-State Geometries and Phosphorescence Energies of Heterocyclic Compounds: Comparison Between TD-PBEO and SAC-CI. Journal of Chemical Theory and Computation, 2014, 10, 3969-3979.	2.3	36
57	Low-Lying π* Resonances of Standard and Rare DNA and RNA Bases Studied by the Projected CAP/SAC–CI Method. Journal of Physical Chemistry A, 2016, 120, 1545-1553.	1.1	36
58	Catalysis of Cu Cluster for NO Reduction by CO: Theoretical Insight into the Reaction Mechanism. ACS Omega, 2019, 4, 2596-2609.	1.6	36
59	Analytical energy gradient of the symmetry-adapted-cluster configuration-interaction general-R method for singlet to septet ground and excited states. Journal of Chemical Physics, 2004, 120, 2593-2605.	1.2	34
60	Synthesis and Optical Properties of Excited-State Intramolecular Proton Transfer Active π-Conjugated Benzimidazole Compounds: Influence of Structural Rigidification by Ring Fusion. Journal of Organic Chemistry, 2017, 82, 12173-12180.	1.7	34
61	Electronic excitation and ionization spectra of cyclopentadiene: Revisit by the symmetry-adapted cluster–configuration interaction method. Journal of Chemical Physics, 2000, 113, 5245.	1.2	33
62	SAC-CI GENERAL-R METHOD: THEORY AND APPLICATIONS TO THE MULTI-ELECTRON PROCESSES. , 2002, , 293-319.		33
63	Peralkylated Tetrasilanes: Conformational Dependence of the Photoelectron Spectrumâ€. Journal of Physical Chemistry A, 2002, 106, 2369-2373.	1.1	33
64	Multistep Intersystem Crossing Pathways in Cinnamate-Based UV-B Sunscreens. Journal of Physical Chemistry Letters, 2016, 7, 4001-4007.	2.1	33
65	Direct determination of second-order density matrix using density equation: Open-shell system and excited state. Journal of Chemical Physics, 2000, 112, 8772-8778.	1.2	32
66	Fine theoretical spectroscopy using symmetry adapted cluster-configuration interaction general-R method: Outer- and inner-valence ionization spectra of CS2 and OCS. Journal of Chemical Physics, 2002, 117, 3248-3255.	1.2	32
67	Singularity-free analytical energy gradients for the SAC/SAC-CI method: coupled perturbed minimum orbital-deformation (CPMOD) approach. Chemical Physics Letters, 2003, 367, 730-736.	1.2	32
68	SAC–CI theoretical investigation on electronic structure of fluorene–thiophene oligomers. Polymer, 2005, 46, 6474-6481.	1.8	32
69	Theoretical Molecular Double-Core-Hole Spectroscopy of Nucleobases. Journal of Physical Chemistry A, 2011, 115, 12070-12082.	1.1	32
70	Cooperative H ₂ Activation at Ag Cluster/Î,-Al ₂ O ₃ (110) Dual Perimeter Sites: A Density Functional Theory Study. Journal of Physical Chemistry C, 2014, 118, 7996-8006.	1.5	31
71	Modeling Molecular Systems at Extreme Pressure by an Extension of the Polarizable Continuum Model (PCM) Based on the Symmetry-Adapted Cluster-Configuration Interaction (SAC–CI) Method: Confined Electronic Excited States of Furan as a Test Case. Journal of Chemical Theory and Computation, 2015, 11, 2063-2076.	2.3	31
72	Potential molecular semiconductor devices: cyclo-C _n (<i>n</i> = 10 and 14) with higher stabilities and aromaticities than acknowledged cyclo-C ₁₈ . Physical Chemistry Chemical Physics, 2020, 22, 4823-4831.	1.3	31

#	Article	IF	CITATIONS
73	Investigation of the Electronic Spectra and Excited-State Geometries of Poly(para-phenylene vinylene) (PPV) and Poly(para-phenylene) (PP) by the Symmetry-Adapted Cluster Configuration Interaction (SAC-CI) Method. Journal of Physical Chemistry A, 2007, 111, 5473-5481.	1.1	30
74	Asymmetric Twisting of <i>C</i> -Centered Octahedral Gold(I) Clusters by Chiral <i>N</i> -Heterocyclic Carbene Ligation. Journal of the American Chemical Society, 2022, 144, 2156-2163.	6.6	30
75	Warning to Theoretical Structure Elucidation of Endohedral Metallofullerenes. Journal of Physical Chemistry C, 2016, 120, 1275-1283.	1.5	29
76	Preferential Photoreaction in a Porous Crystal, Metal–Macrocycle Framework: Pd ^{II} -Mediated Olefin Migration over [2+2] Cycloaddition. Journal of the American Chemical Society, 2018, 140, 16610-16614.	6.6	29
77	Double core–hole correlation satellite spectra of N2 and CO molecules. Chemical Physics Letters, 2012, 521, 45-51.	1.2	28
78	Photophysical properties and photochemistry of substituted cinnamates and cinnamic acids for UVB blocking: effect of hydroxy, nitro, and fluoro substitutions at ortho, meta, and para positions. Photochemical and Photobiological Sciences, 2014, 13, 583-594.	1.6	28
79	Short-range stabilizing potential for computing energies and lifetimes of temporary anions with extrapolation methods. Journal of Chemical Physics, 2015, 142, 034105.	1.2	28
80	Origin of Nb ₂ O ₅ Lewis Acid Catalysis for Activation of Carboxylic Acids in the Presence of a Hard Base. ChemPhysChem, 2018, 19, 2848-2857.	1.0	28
81	Theoretical spectroscopy on K–2, K–1L–1, and L–2 double core hole states of SiX4 (X=H, F, Cl, and CH3) molecules. Chemical Physics, 2011, 384, 28-35.	0.9	27
82	Chemically intuitive indices for charge-transfer excitation based on SAC-CI and TD-DFT calculations. Journal of Computational Chemistry, 2013, 34, 2498-2501.	1.5	27
83	Mechanism of the Aerobic Homocoupling of Phenylboronic Acid on Au ₂₀ ^{â^'} : A DFT Study. Chemistry - an Asian Journal, 2015, 10, 2397-2403.	1.7	27
84	ESIPT emission behavior of methoxy-substituted 2-hydroxyphenylbenzimidazole isomers. New Journal of Chemistry, 2018, 42, 5923-5928.	1.4	27
85	Deep learning enabled inorganic material generator. Physical Chemistry Chemical Physics, 2020, 22, 26935-26943.	1.3	27
86	Absorption and emission spectra of ultraviolet B blocking methoxy substituted cinnamates investigated using the symmetry-adapted cluster configuration interaction method. Journal of Chemical Physics, 2009, 131, 224306.	1.2	26
87	Structure, Interaction, and Dynamics of Au/Pd Bimetallic Nanoalloys Dispersed in Aqueous Ethylpyrrolidone, a Monomeric Moiety of Polyvinylpyrrolidone. Journal of Physical Chemistry C, 2016, 120, 17454-17464.	1.5	26
88	High Turnover Frequency CO–NO Reactions over Rh Overlayer Catalysts: A Comparative Study Using Rh Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 6080-6089.	1.5	26
89	Theoretical study on 31P NMR chemical shifts of phosphorus-modified CHA zeolites. Microporous and Mesoporous Materials, 2020, 294, 109908.	2.2	26
90	Crystallographic Characterization of Er ₂ C ₂ @C _{80–88} : Cluster Stretching with Cage Elongation. Inorganic Chemistry, 2020, 59, 1940-1946.	1.9	26

#	Article	IF	CITATIONS
91	Hyperfine splitting constants studied by the symmetry adapted clusterâ€configuration interaction method. Journal of Chemical Physics, 1994, 100, 5821-5828.	1.2	25
92	Auger decay of molecular double core-hole state. Journal of Chemical Physics, 2011, 135, 154307.	1.2	25
93	Synthesis and Optical Properties of Imidazole- and Benzimidazole-Based Fused π-Conjugated Compounds: Influence of Substituent, Counteranion, and π-Conjugated System. Journal of Organic Chemistry, 2015, 80, 7172-7183.	1.7	25
94	How Can We Understand Au ₈ Cores and Entangled Ligands of Selenolate- and Thiolate-Protected Gold Nanoclusters Au ₂₄ (ER) ₂₀ and Au ₂₀ (ER) ₁₆ (E = Se, S; R = Ph, Me)? A Theoretical Study. Journal of the American Chemical Society, 2015, 137, 8593-8602.	6.6	25
95	Changes in the Electronic States of Low-Temperature Solid <i>n</i> -Tetradecane: Decrease in the HOMO–LUMO Gap. ACS Omega, 2017, 2, 618-625.	1.6	25
96	Nonradiative decay dynamics of methyl-4-hydroxycinnamate and its hydrated complex revealed by picosecond pump–probe spectroscopy. Physical Chemistry Chemical Physics, 2012, 14, 8999.	1.3	24
97	Silicon-coordinated nitrogen-doped graphene as a promising metal-free catalyst for N ₂ O reduction by CO: a theoretical study. RSC Advances, 2018, 8, 22322-22330.	1.7	24
98	Reaction Behavior of the NO Molecule on the Surface of an M _{<i>n</i>} Particle (M = Ru,) Tj ETQqO C Journal of Physical Chemistry A, 2019, 123, 7021-7033.	0 rgBT /C 1.1)verlock 10 Tf 24
99	Elimination of singularities in molecular orbital derivatives: minimum orbital-deformation (MOD) method. Chemical Physics Letters, 2002, 356, 1-6.	1.2	23
100	Possible reaction pathway in methanol dehydrogenation on Pt and Ag surfaces/clusters starting from O–H scission: Dipped adcluster model study. Surface Science, 2009, 603, 641-646.	0.8	23
101	Enhancement of catalytic reactivity of zinc(II) complex by a cyclotriveratrylene-capped structure. Journal of Organometallic Chemistry, 2012, 706-707, 26-29.	0.8	23
102	Electronic excited states and electronic spectra of biphenyl: a study using many-body wavefunction methods and density functional theories. Physical Chemistry Chemical Physics, 2013, 15, 17426.	1.3	23
103	Coumarin-based donor–ï€â€"acceptor organic dyes for a dye-sensitized solar cell: photophysical properties and electron injection mechanism. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	23
104	Er ₂ C ₂ @ <i>C</i> ₂ 90, Er ₂ C ₂ @ <i>C</i> ₂ (40)-C ₉₀ , Er ₂ C ₂ @ <i>C</i> ₂ (44)-C ₉₀ , Er ₂ C ₂ @ <i>C</i> ₂ (44)-C ₉₀ , and Er ₂ C ₂ @ <i>C</i> ₁ (21)-C ₉₀ ; the role of cage-shape on	2.8	23
105	cluster configuration. Nanoscale, 2019, 11, 17319-17326. New aspects of the photodissociation of water in the first absorption band: How strong is excitation of the first triplet state?. Journal of Chemical Physics, 1998, 109, 6641-6646.	1.2	22
106	Theoretical Insights into Monometallofullerene Th@C ₇₆ : Strong Covalent Interaction between Thorium and the Carbon Cage. Inorganic Chemistry, 2018, 57, 2961-2964.	1.9	22
107	Ni-Catalyzed Dimerization and Hydroperfluoroarylation of 1,3-Dienes. Journal of Organic Chemistry, 2018, 83, 9267-9277.	1.7	22
108	Enhanced oxygen reduction activity of platinum subnanocluster catalysts through charge redistribution. Chemical Communications, 2019, 55, 12603-12606.	2.2	22

#	Article	IF	CITATIONS
109	Ionization spectra of XONO2 (X=F, Cl, Br, I) studied by the SAC–CI method. Chemical Physics, 1998, 226, 113-123.	0.9	21
110	Ground and Excited States of Singlet, Cation Doublet, and Anion Doublet States ofo-Benzoquinone:Â A Theoretical Study. Journal of Physical Chemistry A, 2007, 111, 2634-2639.	1.1	21
111	Auger decay of molecular double core-hole and its satellite states: Comparison of experiment and calculation. Journal of Chemical Physics, 2012, 137, 224306.	1.2	21
112	Absorption and emission properties of various substituted cinnamic acids and cinnamates, based on TDDFT investigation. International Journal of Quantum Chemistry, 2013, 113, 542-554.	1.0	21
113	Ionization spectrum of CO2 studied by the SAC-CI general-R method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1999, 55, 487-493.	2.0	20
114	Outer- and inner-valence ionization spectra of NH3, PH3, and AsH3: symmetry-adapted cluster configuration interaction general-R study. Journal of Chemical Physics, 2002, 116, 1934-1943.	1.2	20
115	Ab initio study of the excited singlet states of all-trans α,ï‰-diphenylpolyenes with one to seven polyene double bonds: Simulation of the spectral data within Franck–Condon approximation. Journal of Chemical Physics, 2009, 131, 174313.	1.2	20
116	Efficiency of perturbation-selection and its orbital dependence in the SAC-CI calculations for valence excitations of medium-size molecules. Journal of Computational Chemistry, 2014, 35, 2163-2176.	1.5	20
117	Different photoisomerization routes found in the structural isomers of hydroxy methylcinnamate. Physical Chemistry Chemical Physics, 2018, 20, 17583-17598.	1.3	20
118	Influence of local strain caused by cycloaddition on the band gap control of functionalized single-walled carbon nanotubes. RSC Advances, 2019, 9, 13998-14003.	1.7	20
119	Collision induced absorption spectra and line broadening of CsRg system (Rg=Xe, Kr, Ar, Ne) studied by the symmetry adapted clusterâ€configuration interaction (SACâ€Cl) method. Journal of Chemical Physics, 1995, 102, 6822-6830.	1.2	19
120	Projected <scp>CAP</scp> / <scp>SAC</scp> â€ <scp>CI</scp> method with smooth <scp>V</scp> oronoi potential for calculating resonance states. Journal of Computational Chemistry, 2016, 37, 242-249.	1.5	19
121	Mechanism of the aerobic oxidation of methanol to formic acid on Au ₈ ^{â^'} : A DFT study. International Journal of Quantum Chemistry, 2013, 113, 428-436.	1.0	18
122	Aerobic Oxidation of Methanol to Formic Acid on Au ₈ [–] : Benchmark Analysis Based on Completely Renormalized Coupled-Cluster and Density Functional Theory Calculations. Journal of Physical Chemistry A, 2013, 117, 10416-10427.	1.1	18
123	Probing the electronic structures of Co _n (n = 1–5) clusters on γ-Al ₂ O ₃ surfaces using first-principles calculations. Physical Chemistry Chemical Physics, 2017, 19, 3679-3687.	1.3	18
124	Diels–Alder Cycloaddition of Cyclopentadiene and C ₆₀ at the Extreme High Pressure. Journal of Physical Chemistry A, 2017, 121, 4363-4371.	1.1	18
125	The direct observation of the doorway ¹ nï€* state of methylcinnamate and hydrogen-bonding effects on the photochemistry of cinnamate-based sunscreens. Physical Chemistry Chemical Physics, 2019, 21, 19755-19763.	1.3	18
126	Mechanisms for Solvatochromic Shifts of Free-Base Porphine Studied with Polarizable Continuum Models and Explicit Solute–Solvent Interactions. Journal of Chemical Theory and Computation, 2013, 9, 470-480.	2.3	17

#	Article	IF	CITATIONS
127	Analytical energy gradient of high-spin multiplet state calculated by the SAC-CI method. Chemical Physics Letters, 2001, 350, 351-358.	1.2	16
128	Theoretical investigation on the valence ionization spectra of Cl2O, ClOOCl, and F2O by correlation-based configuration interaction methods. Journal of Chemical Physics, 2003, 118, 5811-5820.	1.2	16
129	Optical absorption and fluorescence of PRODAN in solution: Quantum chemical study based on the symmetry-adapted cluster-configuration interaction method. Chemical Physics Letters, 2012, 552, 53-57.	1.2	16
130	Electronic Transitions in Conformationally Controlled Peralkylated Hexasilanes. ChemPhysChem, 2016, 17, 3010-3022.	1.0	16
131	Core–Shell versus Other Structures in Binary Cu _{38–<i>n</i>} M _{<i>n</i>} Nanoclusters (M = Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au; <i>n</i> = 1, 2, and 6): Theoretical Insight into Determining Factors. Journal of Physical Chemistry C, 2017, 121, 10514-10528.	1.5	16
132	Mechanism of NO–CO reaction over highly dispersed cuprous oxide on γ-alumina catalyst using a metal–support interfacial site in the presence of oxygen: similarities to and differences from biological systems. Catalysis Science and Technology, 2018, 8, 3833-3845.	2.1	16
133	Crystallographic characterization of Er ₃ N@C _{2n} (2 <i>n</i> = 80, 82, 84, 88): the importance of a planar Er ₃ N cluster. Nanoscale, 2019, 11, 13415-13422.	2.8	16
134	CASSCF study of bonding in NiCO and FeCO. International Journal of Quantum Chemistry, 1999, 72, 221-231.	1.0	15
135	Low-lying valence excited states of CNC, C ₂ N, N ₃ , and NCO studied using the electron-attached and ionized symmetry-adapted-cluster configuration-interaction and equation-of-motion coupled-cluster methodologies. Molecular Physics, 2009, 107, 871-880.	0.8	15
136	Electronic Transitions in Conformationally Controlled Tetrasilanes with a Wide Range of SiSiSiSi Dihedral Angles. Chemistry - A European Journal, 2014, 20, 9431-9441.	1.7	15
137	Mechanism of Ullmann Coupling Reaction of Chloroarene on Au/Pd Alloy Nanocluster: A DFT Study. Organometallics, 2016, 35, 1192-1201.	1.1	15
138	Comparing the performance of TDâ€DFT and SACâ€CI methods in the description of excited states potential energy surfaces: An excited state proton transfer reaction as case study. Journal of Computational Chemistry, 2017, 38, 1084-1092.	1.5	15
139	Structures of Bimetallic Copper–Ruthenium Nanoparticles: Incoherent Interface and Surface Active Sites for Catalytic Nitric Oxide Dissociation. Journal of Physical Chemistry C, 2017, 121, 300-307.	1.5	15
140	Low-lying Ï€â^— resonances associated with cyano groups: A CAP/SAC-CI study. Chemical Physics, 2017, 482, 169-177.	0.9	15
141	Control of near infrared photoluminescence properties of single-walled carbon nanotubes by functionalization with dendrons. Nanoscale, 2018, 10, 23012-23017.	2.8	15
142	New Insight into U@C ₈₀ : Missing U@ <i>D</i> ₃ (31921)-C ₈₀ and Nuanced Enantiomers of U@ <i>C</i> ₁ (28324)-C ₈₀ . Inorganic Chemistry, 2019, 58, 14159-14166.	1.9	15
143	Relativistic effects in K-shell ionizations: SAC-CI general-R study based on the DK2 Hamiltonian. Chemical Physics, 2009, 356, 195-198.	0.9	14
144	Heatâ€Resistant Properties in the Phosphorescence of <i>trans</i> â€Bis[βâ€(iminomethyl)aryloxy]platinum(II) Complexes: Effect of Aromaticity on d–π Conjugation Platforms. Chemistry - A European Journal, 2019, 25, 3650-3661.	1.7	14

#	Article	IF	CITATIONS
145	Theoretical Investigation of the Key Roles in Fullerene-Formation Mechanisms: Enantiomer and Enthalpy. ACS Applied Nano Materials, 2020, 3, 547-554.	2.4	14
146	Combination of a Voronoi-Type Complex Absorbing Potential with the XMS-CASPT2 Method and Pilot Applications. Journal of Chemical Theory and Computation, 2020, 16, 2606-2616.	2.3	14
147	Oxidation and Storage Mechanisms for Nitrogen Oxides on Variously Terminated (001) Surfaces of SrFeO _{3â^Î} and Sr ₃ Fe ₂ O _{7â^Î} Perovskites. ACS Applied Materials & Interfaces, 2021, 13, 7216-7226.	4.0	14
148	Selfâ€Regulated Pathwayâ€Dependent Chirality Control of Silver Nanoclusters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
149	Electronic transitions in <i>cis</i> - and <i>trans</i> -dichloroethylenes and tetrachloroethylene. Journal of Chemical Physics, 2008, 129, 174506.	1.2	13
150	Interatomic relaxation effects in double core ionization of chain molecules. Journal of Chemical Physics, 2012, 137, 154316.	1.2	13
151	Electronic excitations of C60 fullerene calculated using the <i>ab initio</i> cluster expansion method. Journal of Chemical Physics, 2012, 137, 134304.	1.2	13
152	Comparative Study of C ^{â^§} N and N ^{â^§} C Type Cyclometalated Ruthenium Complexes with a NAD ⁺ /NADH Function. Inorganic Chemistry, 2012, 51, 8091-8102.	1.9	13
153	Theoretical Study on the Excited Electronic States of Coronene and Its ï€-Extended Molecules Using the Symmetry-Adapted Cluster-Configuration Interaction Method. Bulletin of the Chemical Society of Japan, 2013, 86, 445-451.	2.0	13
154	Time-Dependent Density Functional Theory Investigation of Excited State Intramolecular Proton Transfer in Tris(2-hydroxyphenyl)triazasumanene. Journal of Physical Chemistry A, 2020, 124, 1227-1234.	1.1	13
155	Substitution effect on the nonradiative decay and <i>trans</i> → <i>cis</i> photoisomerization route: a guideline to develop efficient cinnamate-based sunscreens. Physical Chemistry Chemical Physics, 2021, 23, 834-845.	1.3	13
156	Theoretical Insight into Sc ₂ C ₇₆ : Carbide Clusterfullerene Sc ₂ C ₂ @C ₇₄ versus Dimetallofullerene Sc ₂ @C ₇₆ . Inorganic Chemistry, 2017, 56, 10195-10203.	1.9	12
157	In-Depth Theoretical Probe into Novel Mixed-Metal Uranium-Based Endohedral Clusterfullerenes Sc ₂ UX@ <i>I</i> _{<i>h</i>} (31924)-C ₈₀ (X = C, N). Inorganic Chemistry, 2019, 58, 10769-10777.	1.9	12
158	Selective catalytic reduction of NO with NH3 over Cu-exchanged CHA, GME, and AFX zeolites: a density functional theory study. Catalysis Science and Technology, 2021, 11, 1780-1790.	2.1	12
159	Exponentially generated configuration interaction (EGCI) method applied to highâ€spin multiplicity. Journal of Chemical Physics, 1993, 99, 1952-1961.	1.2	11
160	Heterolytic Adsorption of H2 on ZnO(101̄0) Surface:  An ab initio SPC Cluster Model Study. Journal of Physical Chemistry B, 1999, 103, 2689-2695.	1.2	11
161	Electronic spectra and photodissociation of vinyl chloride: A symmetry-adapted cluster configuration interaction study. Journal of Chemical Physics, 2006, 124, 034312.	1.2	11
162	Geometry Relaxations After Inner-Shell Excitations and Ionizations. Collection of Czechoslovak Chemical Communications, 2008, 73, 771-785.	1.0	11

#	Article	IF	CITATIONS
163	Valence ionized states of iron pentacarbonyl and η5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculatio collision-energy resolved Penning ionization electron spectroscopy. Journal of Chemical Physics, 2010, 132, 084302.	n and 1.2	11
164	Gold/Palladium Alloy for Carbon–Halogen Bond Activation: An Unprecedented Halide Dependence. Chemistry - an Asian Journal, 2015, 10, 2669-2676.	1.7	11
165	Ability of density functional theory methods to accurately model the reaction energy pathways of the oxidation of CO on gold cluster: A benchmark study. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	11
166	Regioselectivity of Sc2C2@C3v(8)-C82: Role of the Sumanene-Type Hexagon in Diels–Alder Reaction. Journal of Organic Chemistry, 2016, 81, 8169-8174.	1.7	11
167	Thermodynamic control of quantum defects on single-walled carbon nanotubes. Chemical Communications, 2019, 55, 13757-13760.	2.2	11
168	Reaction mechanism, norbornene and ligand effects, and origins of meta-selectivity of Pd/norbornene-catalyzed C–H activation. Chemical Science, 2020, 11, 113-125.	3.7	11
169	Theoretical insight into oxidation catalysis of chromite spinel MCr2O4 (MÂ=ÂMg, Co, Cu, and Zn): Volcano plot for oxygen-vacancy formation and catalytic activity. Journal of Catalysis, 2021, 393, 30-41.	3.1	11
170	Excited-state geometries and vibrational frequencies studied using the analytical energy gradients of the direct symmetry-adapted cluster–configuration interaction method. I. HAX-type molecules. Journal of Chemical Physics, 2011, 135, 044316.	1.2	10
171	Electronic excitation spectra of molecules in solution calculated using the symmetry-adapted cluster-configuration interaction method in the polarizable continuum model with perturbative approach. Journal of Chemical Physics, 2014, 140, 064114.	1.2	10
172	An efficient computational scheme for electronic excitation spectra of molecules in solution using the symmetry-adapted cluster–configuration interaction method: The accuracy of excitation energies and intuitive charge-transfer indices. Journal of Chemical Physics, 2014, 141, 154104.	1.2	10
173	Computational Studies on Reaction Mechanism and Origins of Selectivities in Nickel-Catalyzed (2 + 2 +) Tj ETQq1 Chemistry, 2017, 82, 2150-2159.	1 0.7843 1.7	14 rgBT /O 10
174	Pivotal Role of Nonmetal Atoms in the Stabilities, Geometries, Electronic Structures, and Isoelectronic Chemistry of Sc 3 X@C 80 (X = C, N, and O). Journal of Computational Chemistry, 2019, 40, 2730-2738.	1.5	10
175	Goldâ€Palladium Nanocluster Catalysts for Homocoupling: Electronic Structure and Interface Dynamics. Chemical Record, 2019, 19, 947-959.	2.9	10
176	Mechanistic insight into the catalytic hydrogenation of nonactivated aldehydes with a Hantzsch ester in the presence of a series of organoboranes: NMR and DFT studies. RSC Advances, 2019, 9, 10201-10210.	1.7	10
177	Importance of the Pd and Surrounding Sites in Hydrosilylation of Internal Alkynes by Palladium–Gold Alloy Catalyst. Organometallics, 2020, 39, 528-537.	1.1	10
178	Electronic excitations of fluoroethylenes. Journal of Chemical Physics, 2007, 126, 044306.	1.2	9
179	Synthesis and characterization of a cyclotriveratrylene-capped azaphosphatrane. Tetrahedron Letters, 2011, 52, 4129-4131.	0.7	9
180	Excited states and electronic spectra of annulated dinuclear free-base phthalocyanines: A theoretical study on near-infrared-absorbing dyes. Journal of Chemical Physics, 2012, 136, 114304.	1.2	9

#	Article	IF	CITATIONS
181	Does B3LYP correctly describe magnetism of manganese complexes with various oxidation numbers and various structural motifs?. Chemical Physics Letters, 2012, 519-520, 134-140.	1.2	9
182	Quantum Chemical Insight into La ₂ C ₉₆ : Metal Carbide Fullerene La ₂ C ₂ @C ₉₄ versus Dimetallofullerene La ₂ @C ₉₆ . Inorganic Chemistry, 2017, 56, 11883-11890.	1.9	9
183	Frenkelâ€exciton decomposition analysis of circular dichroism and circularly polarized luminescence for multichromophoric systems. Journal of Computational Chemistry, 2018, 39, 931-935.	1.5	9
184	Electronic processes in NO dimerization on Ag and Cu clusters: DFT and MRMP2 studies. Journal of Computational Chemistry, 2019, 40, 181-190.	1.5	9
185	Resonant states in cyanogen NCCN. Physical Chemistry Chemical Physics, 2020, 22, 23141-23147.	1.3	9
186	Facet-dependent catalytic activity of anatase TiO2 for the selective catalytic reduction of NO with NH3: A dispersion-corrected density functional theory study. Applied Catalysis A: General, 2021, 623, 118250.	2.2	9
187	Theoretical studies of the potential energy surface and wavepacket dynamics of the Li 3 system. Theoretical Chemistry Accounts, 1999, 102, 226-236.	0.5	8
188	Theoretical Fine Spectroscopy with SAC-CI Method: Outer- and Inner-Valence Ionization Spectra of CO and N2. Collection of Czechoslovak Chemical Communications, 2005, 70, 881-904.	1.0	8
189	Symmetry-adapted-cluster configuration-interaction and equation-of-motion coupled-cluster studies of electronically excited states of copper tetrachloride and copper tetrabromide dianions. Chemical Physics, 2012, 399, 94-110.	0.9	8
190	Linear response function approach for the boundary problem of QM/MM methods. International Journal of Quantum Chemistry, 2013, 113, 336-341.	1.0	8
191	Ïf-Bond Metathesis between M–X and RC(O)X′ (M = Pt, Pd; X, X′ = Cl, Br, I): Facile Determination of the Relative Î [°] <i>G</i> Values of the Oxidative Additions of RC(O)X to an M(0) Complex, Evidence by Density Functional Theory Calculations, and Synthetic Applications. Organometallics, 2013, 32, 2026-2032.	1.1	8
192	Protonâ€Induced Generation of Remote Nâ€Heterocyclic Carbene–Ru Complexes. Chemistry - A European Journal, 2015, 21, 106-110.	1.7	8
193	Intramolecular Hydroamination by a Primary Amine of an Unactivated Alkene on Gold Nanoclusters: A DFT Study. ChemCatChem, 2017, 9, 4490-4500.	1.8	8
194	Impact of Enantiomeric Ligand Composition on the Photophysical Properties of Chiral Ag29 Nanoclusters. Bulletin of the Chemical Society of Japan, 2020, 93, 834-840.	2.0	8
195	A comparative study of [Ag ₁₁ (ⁱ PrS) ₉ (dppb) ₃] ²⁺ and [Ag ₁₅ S(^s BuS) ₁₂ (dppb) ₃] ⁺ : templating effect on structure and photoluminescence. Dalton Transactions. 2021. 50. 10561-10566.	1.6	8
196	Halogen exchange by reaction of CpRu(Cl)(PPh3)2 with MeC(O)X (XÂ=ÂBr, I) and its mechanistic study. Journal of Organometallic Chemistry, 2014, 769, 34-37.	0.8	7
197	Nucleobases tagged to gold nanoclusters cause a mechanistic crossover in the oxidation of CO. Physical Chemistry Chemical Physics, 2015, 17, 24275-24281.	1.3	7
198	Resonance Energies and Lifetimes from the Analytic Continuation of the Coupling Constant Method: Robust Algorithms and a Critical Analysis. Journal of Chemical Theory and Computation, 2017, 13, 2550-2560.	2.3	7

#	Article	IF	CITATIONS
199	Theoretical Insight into Configurational Selectivity of Functionalized Single-Walled Carbon Nanotubes Based on the Clar Sextet Theory. Journal of Physical Chemistry C, 2019, 123, 18629-18637.	1.5	7
200	Covalent interactions depend on the distances between metals and fullerenes for thermodynamically stable M@C ₇₈ (M = La, Ce, and Sm). Inorganic Chemistry Frontiers, 2020, 7, 2538-2547.	3.0	7
201	Theoretical Design of Photofunctional Molecular Aggregates for Optical Properties: An Inverse Design Approach. Journal of Physical Chemistry C, 2020, 124, 13329-13337.	1.5	7
202	AFX Zeolite for Use as a Support of NH3-SCR Catalyst Mining through AICE Joint Research Project of Industries–Academia–Academia. Catalysts, 2021, 11, 163.	1.6	7
203	Catalytic Oxidation of Benzyl Alcohol to Benzaldehyde on Au8 and Au6Pd2 Clusters: A DFT Study on the Reaction Mechanism. Catalysts, 2021, 11, 720.	1.6	7
204	Communication: Coupled-cluster interpretation of the photoelectron spectrum of \${m Au}_{3}^{-}\$ Au 3â^'. Journal of Chemical Physics, 2014, 141, 101102.	1.2	6
205	Deciphering the Role of Long-Range Interaction in Endohedral Metallofullerenes: A Revisit to Sc ₂ C ₇₀ . Journal of Physical Chemistry C, 2017, 121, 20481-20488.	1.5	6
206	Synthesis and Optical Properties of Fused π-Conjugated Imidazole Compounds. Chemistry Letters, 2017, 46, 1372-1375.	0.7	6
207	Theoretical Insight into Thermodynamically Optimal U@C ₈₄ : Three-Electron Transfer Rather Than Four-Electron Transfer. Inorganic Chemistry, 2020, 59, 12650-12658.	1.9	6
208	DFT/TD-DFT investigation on the photoinduced electron transfer of diruthenium and viologen complexes. Journal of Luminescence, 2020, 222, 117121.	1.5	6
209	Mechanistic Studies on Photoinduced Catalytic Olefin Migration Reactions at the Pd(II) Centers of a Porous Crystal, Metalâ€Macrocycle Framework. Chemistry - an Asian Journal, 2021, 16, 202-206.	1.7	6
210	Emergence of intense near-infrared photoluminescence by photoactivation of silver nanoclusters. Chemical Communications, 2021, 57, 6483-6486.	2.2	6
211	Attenuated Total Reflection–Far-Ultraviolet Spectroscopy and Quantum Chemical Calculations of the Electronic Structure of the Top Surface and Bulk of Polyethylenes with Different Crystallinities. Applied Spectroscopy, 2021, 75, 971-979.	1.2	6
212	Enhanced oxygen reduction activity of size-selected platinum subnanocluster catalysts: Pt _{<i>n</i>} (<i>n</i> = 3–9). Catalysis Science and Technology, 2022, 12, 1400-1407.	2.1	6
213	Valence ionization spectra of 4π-electron molecules with low-lying satellites involving n–π* and π–Ĩ€* transitions. Molecular Physics, 2006, 104, 971-982.	0.8	5
214	Photophysical Properties and Photochemistry of <i>EE</i> , <i>EZ</i> , and <i>ZZ</i> -1,4-Dimethoxy-2,5-bis[2-(thien-2-yl)ethenyl] Benzene in Solution: Theory and Experiment. Journal of Physical Chemistry A, 2012, 116, 924-937.	1.1	5
215	Sumanenetrione Anions Generated by Electrochemical and Chemical Reduction. Chemistry Letters, 2014, 43, 1297-1299.	0.7	5
216	Gold/Palladium Bimetallic Nanoclusters for C-X Bond Activation: A Unique Effect of Gold. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 1130-1140.	0.0	5

#	Article	IF	CITATIONS
217	Temporary Anion States of Ethene Interacting with Single Molecules of Methane, Ethane, and Water. Journal of Physical Chemistry A, 2018, 122, 2580-2586.	1.1	5
218	Pt-Pd Nanoalloy for the Unprecedented Activation of Carbon-Fluorine Bond at Low Temperature. Bulletin of the Chemical Society of Japan, 2020, 93, 1180-1185.	2.0	5
219	Propene oxidation catalysis and electronic structure of M ₅₅ particles (M = Pd or Rh): differences and similarities between Pd ₅₅ and Rh ₅₅ . Physical Chemistry Chemical Physics, 2020, 22, 11783-11796.	1.3	5
220	Theoretical Study of NO Dissociative Adsorption onto 3d Metal Particles M ₅₅ (M = Fe, Co,) Tj ETQc ACS Omega, 2021, 6, 4888-4898.	0 0 0 rgB 1.6	T /Overlock 10 5
221	Origin of the Aggregationâ€Induced Phosphorescence of Platinum(II) Complexes: The Role of Metal–Metal Interactions on Emission Decay in the Crystalline State. Chemistry - an Asian Journal, 2021, 16, 3129-3140.	1.7	5
222	Development Of Sac-Ci General-R Method For Theoretical Fine Spectroscopy. Challenges and Advances in Computational Chemistry and Physics, 2010, , 79-112.	0.6	5
223	Cluster-Geometry-Associated Metal–Metal Bonding in Trimetallic Carbide Clusterfullerenes. Inorganic Chemistry, 2022, 61, 11277-11283.	1.9	5
224	SPC cluster modeling of metal oxides: ways of determining the values of point charges in the embedded cluster model. Science in China Series B: Chemistry, 1998, 41, 113-121.	0.8	4
225	Electronic structure and optical properties of chelating heteroatomic conjugated molecules: a SAC-CI study. Theoretical Chemistry Accounts, 2009, 124, 395-408.	0.5	4
226	Photophysical properties and vibrational structure of ladder-type penta p-phenylene and carbazole derivatives based on SAC-CI calculations. Theoretical Chemistry Accounts, 2011, 130, 161-173.	0.5	4
227	Polarization and site dependence of interatomic relaxation effects in double core hole states. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 164012.	0.6	4
228	Theoretical study of the electronic excitations of free-base porphyrin–Ar2 van der Waals complexes. Journal of Chemical Physics, 2013, 139, 074303.	1.2	4
229	Electronic excitation and ionization behavior of N-hydroxypyridine-2(1H)-thione and its deprotonated anion in a polarizable medium studied using quantum chemical computations. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	4
230	Sc ₃ N@C _s (39715)–C ₈₂ : a missing isomer linked to Sc ₃ N@C _{2v} (39718)–C ₈₂ by a single step Stone–Wales transformation. RSC Advances, 2016, 6, 75588-75593.	1.7	4
231	Photophysical properties of fluorescent imaging biological probes of nucleic acids: SAC I and TDâ€DFT Study. Journal of Computational Chemistry, 2019, 40, 127-134.	1.5	4
232	Lifetimes of Be ₃ ^{2–} and Mg ₃ ^{2–} Cluster Dianions. Journal of Physical Chemistry A, 2021, 125, 3579-3588.	1.1	4
233	Single atom alloys <i>vs.</i> phase separated alloys in Cu, Ag, and Au atoms with Ni(111) and Ni, Pd, and Pt atoms with Cu(111): a theoretical exploration. Physical Chemistry Chemical Physics, 2022, 24, 10420-10438.	1.3	4
234	C4Cl: Bent or linear?. Journal of Chemical Physics, 2006, 125, 194314.	1.2	3

#	Article	IF	CITATIONS
235	Facile Method of Halogen Exchange between Au(Cl)(<i>L</i>) and MeC(O) <i>X</i> (<i>L</i> = PPh3 and) Tj ETQq 831-832.	1 1 0.7843 0.7	314 rgBT /0 3
236	Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model. AIP Conference Proceedings, 2015, , .	0.3	3
237	Lithium–bromine exchange reaction on C60: first theoretical proposal of a stable singlet fullerene carbene without the heteroatom. Organic Chemistry Frontiers, 2021, 8, 1551-1562.	2.3	3
238	Theoretical Study of the Propene Combustion Catalysis of Chromite Spinels: Reaction Mechanism and Relation between the Activity and Electronic Structure of Spinels. Journal of Physical Chemistry C, 2021, 125, 25983-26002.	1.5	3
239	Coupling between Substituents as a Function of Cage Structure: Synthesis and Valence Ionized States of Bridgehead Disubstituted Parent and Hexafluorinated Bicyclo[1.1.1]pentane Derivatives C5X6Y2. Chemistry - an Asian Journal, 2007, 2, 1007-1019.	1.7	2
240	High-precision <i>ab initio</i> core-level spectroscopy. Journal of Physics: Conference Series, 2009, 194, 012006.	0.3	2
241	Vibrational spectra and geometry relaxation in core-electronic processes of N ₂ O and CO ₂ . Journal of Physics: Conference Series, 2010, 235, 012020.	0.3	2
242	The effect of vibrational motion on the dynamics of shape resonant photoionization of BF3leading to the state of. Molecular Physics, 2010, 108, 1055-1067.	0.8	2
243	Theoretical Study on the Optical Properties of Multichromophoric Systems Based on an Exciton Approach: Modification Guidelines. ChemPhotoChem, 2019, 3, 707-718.	1.5	2
244	Stabilities, Electronic Structures, and Bonding Properties of Iron Complexes (E 1 E 2)Fe(CO) 2 (CNAr) Tj ETQq0 0) rgBT /Ov	erlock 10 T
245	Stabilities, Electronic Structures, and Bonding Properties of 20-Electron Transition Metal Complexes (Cp) ₂ TMO and their One-Dimensional Sandwich Molecular Wires (Cp =) Tj ETQq1 1 0.784314 rgBT /	Overlock 1 1.1	.0 Tf 50 34 2
246	125, 721-730. Selfâ€Regulated Pathwayâ€Dependent Chirality Control of Silver Nanoclusters. Angewandte Chemie, 2022, 134, .	1.6	2
247	Electronic excited states of macrocyclic compounds: direct SAC-CI study. Procedia Computer Science, 2011, 4, 1129-1134.	1.2	1
248	New paint and a new engine. Journal of Computational Chemistry, 2013, 34, 1-1.	1.5	1
249	lodine molecule for neutrino mass spectroscopy: ab initio calculation of spectral rate. Progress of Theoretical and Experimental Physics, 2014, 2014, 13B02-0.	1.8	1
250	CASSCF study of bonding in NiCO and FeCO. , 1999, 72, 221.		1
251	Electronic Structure and Transition in the Far-Ultraviolet Region. , 2015, , 29-54.		1
252	Density matrix variational theory: Strength of Weinhold-Wilson inequalities. , 2003, , 543-557.		1

#	Article	IF	CITATIONS
253	Photochemistry of Organic Light-Emitting Diodes. AIP Conference Proceedings, 2007, , .	0.3	0
254	Photochemistry of Biological Chemosensors, Organic Light-Emitting Diodes, and Inner-shell Electronic Processes. AIP Conference Proceedings, 2008, , .	0.3	0
255	Electronic structure and optical properties of conjugated molecules: SAC-CI study. , 2012, , .		0
256	Electronic structure and optical properties of conjugated molecules: SAC-CI study. , 2012, , .		0
257	Study of electronic transitions by using attenuated total reflectance spectroscopy in the far-UV region. , 2016, , .		0
258	Special Issue on New Challenges for Catalysis from Theory to Experiment. Chemical Record, 2016, 16, 2186-2186.	2.9	0
259	Origin of Nb2 O5 Lewis Acid Catalysis for Activation of Carboxylic Acids in the Presence of a Hard Base. ChemPhysChem, 2018, 19, 2809-2809.	1.0	0
260	Theoretical Study on the Optical Properties of Multichromophoric Systems Based on an Exciton Approach: Modification Guidelines. ChemPhotoChem, 2019, 3, 663-663.	1.5	0
261	Theoretical Spectroscopy of Inner-Shell Electronic Processes and Photochemistry of Fluorescent Molecules. Progress in Theoretical Chemistry and Physics, 2009, , 103-124.	0.2	0
262	Double Core Hole Spectroscopy of Small Molecules. , 2012, , .		0
263	Changes in electronic states of molecules resulted from interactions in the condensed phase. , 2017, , .		0
264	Intramolecular Hydroamination by a Primary Amine of an Unactivated Alkene on Gold Nanoclusters: A DFT Study. ChemCatChem, 2017, 9, 4450-4450.	1.8	0