Anti Vasemägi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3441372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expressed Sequence Tag-Linked Microsatellites as a Source of Gene-Associated Polymorphisms for Detecting Signatures of Divergent Selection in Atlantic Salmon (Salmo salar L.). Molecular Biology and Evolution, 2005, 22, 1067-1076.	3.5	252
2	SNPâ€array reveals genomeâ€wide patterns of geographical and potential adaptive divergence across the natural range of <scp>A</scp> tlantic salmon (<i><scp>S</scp>almo salar</i>). Molecular Ecology, 2013, 22, 532-551.	2.0	212
3	Comparing RADseq and microsatellites for estimating genetic diversity and relatedness — Implications for brown trout conservation. Ecology and Evolution, 2019, 9, 2106-2120.	0.8	125
4	The Adaptive Hypothesis of Clinal Variation Revisited: Single-Locus Clines as a Result of Spatially Restricted Gene Flow. Genetics, 2006, 173, 2411-2414.	1.2	120
5	Parasite infection and decreased thermal tolerance: impact of proliferative kidney disease on a wild salmonid fish in the context of climate change. Functional Ecology, 2017, 31, 216-226.	1.7	90
6	Molecular evolutionary and population genomic analysis of the nineâ€spined stickleback using a modified restrictionâ€siteâ€associated <scp>DNA</scp> tag approach. Molecular Ecology, 2013, 22, 565-582.	2.0	85
7	Population genetic structure and postglacial colonization of Atlantic salmon (Salmo salar) in the Baltic Sea area based on microsatellite DNA variation. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 1887-1904.	0.7	76
8	A Comparison of Biallelic Markers and Microsatellites for the Estimation of Population and Conservation Genetic Parameters in Atlantic Salmon (Salmo salar). Journal of Heredity, 2007, 98, 692-704.	1.0	61
9	Population genomic analyses of earlyâ€phase <scp>A</scp> tlantic <scp>S</scp> almon (<i><scp>S</scp>almo salar</i>) domestication/captive breeding. Evolutionary Applications, 2015, 8, 93-107.	1.5	59
10	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 February 2013–31 March 2013. Molecular Ecology Resources, 2013, 13, 760-762.	2.2	58
11	Effect of Environmental Factors and an Emerging Parasitic Disease on Gut Microbiome of Wild Salmonid Fish. MSphere, 2017, 2, .	1.3	56
12	A proteomics approach reveals divergent molecular responses to salinity in populations of European whitefish (<i>Coregonus lavaretus</i>). Molecular Ecology, 2012, 21, 3516-3530.	2.0	54
13	Life in a drop: Sampling environmental DNA for marine fishery management and ecosystem monitoring. Marine Policy, 2021, 124, 104331.	1.5	52
14	ls telomere length a molecular marker of past thermal stress in wild fish?. Molecular Ecology, 2016, 25, 5412-5424.	2.0	51
15	Screen for Footprints of Selection during Domestication/Captive Breeding of Atlantic Salmon. Comparative and Functional Genomics, 2012, 2012, 1-14.	2.0	50
16	Genetic biodiversity in the Baltic Sea: species-specific patterns challenge management. Biodiversity and Conservation, 2013, 22, 3045-3065.	1.2	50
17	Comparison of Migratory and Resident Populations of Brown Trout Reveals Candidate Genes for Migration Tendency. Genome Biology and Evolution, 2018, 10, 1493-1503.	1.1	50
18	Can environmental DNA (eDNA) be used for detection and monitoring of introduced crab species in the Baltic Sea?. Marine Pollution Bulletin, 2016, 109, 350-355.	2.3	49

Anti VasemÃ**g**i

#	Article	IF	CITATIONS
19	Beyond MHC: signals of elevated selection pressure on Atlantic salmon (<i>Salmo salar</i>) immuneâ€relevant loci. Molecular Ecology, 2010, 19, 1273-1282.	2.0	46
20	Finding Markers That Make a Difference: DNA Pooling and SNP-Arrays Identify Population Informative Markers for Genetic Stock Identification. PLoS ONE, 2013, 8, e82434.	1.1	45
21	Discovery and application of insertion-deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon. BMC Genomics, 2010, 11, 156.	1.2	44
22	Proliferative kidney disease (PKD) agent Tetracapsuloides bryosalmonae in brown trout populations in Estonia. Diseases of Aquatic Organisms, 2014, 109, 139-148.	0.5	42
23	Genomewide introgressive hybridization patterns in wild <scp>A</scp> tlantic salmon influenced by inadvertent gene flow from hatchery releases. Molecular Ecology, 2016, 25, 1275-1293.	2.0	42
24	Highly Continuous Genome Assembly of Eurasian Perch (<i>Perca fluviatilis</i>) Using Linked-Read Sequencing. G3: Genes, Genomes, Genetics, 2018, 8, 3737-3743.	0.8	42
25	Quantitative Genetic Variation in, and Environmental Effects on, Pathogen Resistance and Temperature-Dependent Disease Severity in a Wild Trout. American Naturalist, 2017, 190, 244-265.	1.0	40
26	Historical and recent genetic bottlenecks in European grayling, Thymallus thymallus. Conservation Genetics, 2010, 11, 279-292.	0.8	39
27	High Lactose Tolerance in North Europeans: A Result of Migration, Not In Situ Milk Consumption. Perspectives in Biology and Medicine, 2012, 55, 163-174.	0.3	38
28	Genetic and lifeâ€history changes associated with fisheriesâ€induced population collapse. Evolutionary Applications, 2013, 6, 749-760.	1,5	36
29	Seventy-five EST-linked Atlantic salmon (Salmo salar L.) microsatellite markers and their cross-amplification in five salmonid species. Molecular Ecology Notes, 2005, 5, 282-288.	1.7	34
30	Fish scales and SNP chips: SNP genotyping and allele frequency estimation in individual and pooled DNA from historical samples of Atlantic salmon (Salmo salar). BMC Genomics, 2013, 14, 439.	1.2	32
31	Cost-effective genome-wide estimation of allele frequencies from pooled DNA in Atlantic salmon (Salmo salarL.). BMC Genomics, 2013, 14, 12.	1.2	28
32	Interacting environmental and chemical stresses under global change in temperate aquatic ecosystems: stress responses, adaptation, and scaling. Regional Environmental Change, 2017, 17, 2061-2077.	1.4	26
33	First record of proliferative kidney disease agent Tetracapsuloides bryosalmonae in wild brown trout and European grayling in Finland. Diseases of Aquatic Organisms, 2017, 125, 73-78.	0.5	25
34	Analysis of gene associated tandem repeat markers in Atlantic salmon (Salmo salar L.) populations: implications for restoration and conservation in the Baltic Sea. Conservation Genetics, 2005, 6, 385-397.	0.8	22
35	Less is more: extreme genome complexity reduction with dd <scp>RAD</scp> using Ion Torrent semiconductor technology. Molecular Ecology Resources, 2015, 15, 1145-1152.	2.2	22
36	Unanticipated population structure of European grayling in its northern distribution: implications for conservation prioritization. Frontiers in Zoology, 2009, 6, 6.	0.9	19

Anti VasemÃ**ë**i

#	Article	IF	CITATIONS
37	Comprehensive microsatellite baseline for genetic stock identification of Atlantic salmon (Salmo) Tj ETQq1 1 0.78	4314 rgBT 1.2	- 19verlock
38	Generation of a neutral <scp><i>F</i>_{ST}</scp> baseline for testing local adaptation on gill raker number within and between European whitefish ecotypes in the Baltic Sea basin. Journal of Evolutionary Biology, 2015, 28, 1170-1183.	0.8	18
39	Association Mapping Based on a Common-Garden Migration Experiment Reveals Candidate Genes for Migration Tendency in Brown Trout. G3: Genes, Genomes, Genetics, 2019, 9, 2887-2896.	0.8	18
40	Telomere length and antioxidant defense associate with parasite-induced retarded growth in wild brown trout. Oecologia, 2017, 185, 365-374.	0.9	16
41	Differences in the metabolic response to temperature acclimation in nineâ€spined stickleback (<i>Pungitius pungitius</i>) populations from contrasting thermal environments. Journal of Experimental Zoology, 2014, 321, 550-565.	1.2	15
42	Proteome variance differences within populations of European whitefish (Coregonus lavaretus) originating from contrasting salinity environments. Journal of Proteomics, 2014, 105, 144-150.	1.2	14
43	Genes that affect Atlantic salmon growth in hatchery do not have the same effect in the wild. Functional Ecology, 2016, 30, 1687-1695.	1.7	13
44	Invasion genomics: genotyping-by-sequencing approach reveals regional genetic structure and signatures of temporal selection in an introduced mud crab. Marine Biology, 2017, 164, 1.	0.7	13
45	Genome-wide divergence patterns support fine-scaled genetic structuring associated with migration tendency in brown trout. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 1680-1692.	0.7	13
46	A century of genetic homogenization in Baltic salmon—evidence from archival DNA. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203147.	1.2	13
47	Genetic variation and population structure of the garden escaper Lupinus polyphyllus in Finland. Plant Systematics and Evolution, 2016, 302, 399-407.	0.3	12
48	Comparative High-Density Linkage Mapping Reveals Conserved Genome Structure but Variation in Levels of Heterochiasmy and Location of Recombination Cold Spots in the Common Frog. G3: Genes, Genomes, Genetics, 2017, 7, 637-645.	0.8	12
49	Genetic discrimination of brackish and freshwater populations of Eurasian perch (Perca fluviatilis L.) in the Baltic Sea drainage: implications for fish forensics. Fisheries Research, 2016, 183, 155-164.	0.9	11
50	Environmental feedbacks in temperate aquatic ecosystems under global change: why do we need to consider chemical stressors?. Regional Environmental Change, 2017, 17, 2079-2096.	1.4	11
51	Association mapping reveals candidate loci for resistance and anaemic response to an emerging temperatureâ€driven parasitic disease in a wild salmonid fish. Molecular Ecology, 2018, 27, 1385-1401.	2.0	11
52	The strength and form of natural selection on transcript abundance in the wild. Molecular Ecology, 2021, 30, 2724-2737.	2.0	11
53	Strong positive relationships between eDNA concentrations and biomass in juvenile and adult pike (<i>Esox lucius</i>) under controlled conditions: Implications for monitoring. Environmental DNA, 2022, 4, 881-893.	3.1	11
54	Double-restriction-site-associated DNA (dRAD) approach for fast microsatellite marker development in Eurasian perch (Perca fluviatilis L.). Conservation Genetics Resources, 2014, 6, 183-184.	0.4	10

ANTI VASEMÃ

#	Article	IF	CITATIONS
55	Genetic variation facilitates seedling establishment but not population growth rate of a perennial invader. Annals of Botany, 2016, 117, 187-194.	1.4	10
56	Draft Genome Assembly of the Freshwater Apex Predator Wels Catfish (<i>Silurus glanis</i>) Using Linked-Read Sequencing. G3: Genes, Genomes, Genetics, 2020, 10, 3897-3906.	0.8	9
57	Population Connectivity Predicts Vulnerability to White-Nose Syndrome in the Chilean Myotis (<i>Myotis chiloensis</i>) - A Genomics Approach. G3: Genes, Genomes, Genetics, 2020, 10, 2117-2126.	0.8	9
58	Know your enemy – transcriptome of myxozoan <i>Tetracapsuloides bryosalmonae</i> reveals potential drug targets against proliferative kidney disease in salmonids. Parasitology, 2021, 148, 726-739.	0.7	9
59	Use of sibling relationship reconstruction to complement traditional monitoring in fisheries management and conservation of brown trout. Conservation Biology, 2015, 29, 1164-1175.	2.4	8
60	Heritability, Environmental Effects, and Genetic and Phenotypic Correlations of Oxidative Stress Resistance-Related Enzyme Activities During Early Life Stages in Atlantic Salmon. Evolutionary Biology, 2016, 43, 215-226.	0.5	8
61	Humic-acid-driven escape from eye parasites revealed by RNA-seq and target-specific metabarcoding. Parasites and Vectors, 2020, 13, 433.	1.0	7
62	Otolith elemental characteristics of whitefish (<i>Coregonus lavaretus</i>) from brackish waters of the Gulf of Bothnia, Baltic Sea. Ecology of Freshwater Fish, 2017, 26, 66-74.	0.7	6
63	Climate changeâ€driven disease in sympatric hosts: Temporal dynamics of parasite burden and proliferative kidney disease in wild brown trout and Atlantic salmon. Journal of Fish Diseases, 2021, 44, 689-699.	0.9	6
64	Wholeâ€genome sequencing illuminates multifaceted targets of selection to humic substances in Eurasian perch. Molecular Ecology, 2022, 31, 2367-2383.	2.0	6
65	Temporally stable small-scale genetic structure of Northern pike (Esox lucius) in the coastal Baltic Sea. Fisheries Research, 2022, 254, 106402.	0.9	6
66	Combining genetic markers with an adaptive meristic trait improves performance of mixed-stock analysis in Baltic whitefish. ICES Journal of Marine Science, 2016, 73, 2529-2538.	1.2	5
67	Prediction of harmful variants on mitochondrial genes: Test of habitatâ€dependent and demographic effects in a euryhaline fish. Ecology and Evolution, 2017, 7, 3826-3835.	0.8	5
68	Mapping of quantitative trait loci for life history traits segregating within common frog populations. Heredity, 2019, 122, 800-808.	1.2	5
69	Are you ready for the heat? Phenotypic plasticity versus adaptation of heat tolerance in threeâ€spined stickleback. Ecosphere, 2022, 13, .	1.0	5
70	First microsatellite loci of the myxozoan parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD). Diseases of Aquatic Organisms, 2015, 113, 85-88.	0.5	3
71	Status and monitoring of the buff-tailed bumblebee <i>Bombus terrestris</i> Linnaeus (Hymenoptera:) Tj ETQ	1 1 8.7843	314 ₂ rgBT /Ove
72	Characterisation of polymorphic microsatellite loci for the bryozoan Fredericella sultana, the primary host of the causative agent of salmonid proliferative kidney disease. Conservation Genetics Resources, 2014, 6, 481-482.	0.4	1

#	Article	IF	CITATIONS
73	The complete mitochondrial DNA sequence of Pectenocypris sp. (Actinopterygii: Cyprinidae) from Serkap River, Sumatra, Indonesia. Mitochondrial DNA Part B: Resources, 2018, 3, 122-124.	0.2	0