Dirk C Jordan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3440985/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Longâ€Term Degradation of Passivated Emitter and Rear Contact Silicon Solar Cell under Light and Heat. Solar Rrl, 2022, 6, 2100727.	5.8	1
2	Photovoltaic fleet degradation insights. Progress in Photovoltaics: Research and Applications, 2022, 30, 1166-1175.	8.1	18
3	International collaboration framework for the calculation of performance loss rates: Data quality, benchmarks, and trends (towards a uniform methodology). Progress in Photovoltaics: Research and Applications, 2021, 29, 573-602.	8.1	25
4	Photovoltaic Module Imaging for Hail Damage Assessment with Multi-year Follow Up. , 2021, , .		1
5	Performance Index Assessment for the PV Fleet Performance Data Initiative. , 2021, , .		3
6	Build solar-energy systems to last — save billions. Nature, 2021, 600, 215-217.	27.8	21
7	Reducing Interanalyst Variability in Photovoltaic Degradation Rate Assessments. IEEE Journal of Photovoltaics, 2020, 10, 206-212.	2.5	22
8	System-level performance and degradation of 21 GWDC of utility-scale PV plants in the United States. Journal of Renewable and Sustainable Energy, 2020, 12, .	2.0	20
9	Activation Energy for End-of-Life Solder Bond Degradation: Thermal Cycling of Field-Aged PV Modules. IEEE Journal of Photovoltaics, 2020, 10, 1762-1771.	2.5	8
10	The 2020 photovoltaic technologies roadmap. Journal Physics D: Applied Physics, 2020, 53, 493001.	2.8	274
11	PV field reliability status—Analysis of 100 000 solar systems. Progress in Photovoltaics: Research and Applications, 2020, 28, 739-754.	8.1	49
12	Signal Processing on PV Time-Series Data: Robust Degradation Analysis Without Physical Models. IEEE Journal of Photovoltaics, 2020, 10, 546-553.	2.5	14
13	Local Resistance Measurement for Degradation of c-Si Heterojunction with Intrinsic Thin Layer (HIT) Solar Modules. , 2020, , .		2
14	On the Ambiguity of Using Isc for Analyzing Suns-Voc Data on Modules. , 2020, , .		1
15	Investigation of SHJ Module Degradation: A Post- Mortem Approach. , 2020, , .		1
16	UV-Fluorescence Imaging of Silicon PV Modules After Outdoor Aging and Accelerated Stress Testing. , 2020, , .		5
17	PV Fleet Performance Data Initiative Program and Methodology. , 2020, , .		3
18	Prediction of Climate-Specific Degradation Rate for Photovoltaic Encapsulant Discoloration. IEEE Journal of Photovoltaics, 2020, 10, 1093-1101.	2.5	18

Dirk C Jordan

#	Article	IF	CITATIONS
19	Methodology to predict annual yield losses and gains caused by solar module design and materials under field exposure. Solar Energy Materials and Solar Cells, 2019, 202, 110069.	6.2	9
20	Nondestructive Characterization and Accelerated UV Testing of Browned Field-Aged PV Modules. IEEE Journal of Photovoltaics, 2019, 9, 1733-1740.	2.5	10
21	Imaging Lateral Drift Kinetics to Understand Causes of Outdoor Degradation in Silicon Heterojunction Photovoltaic Modules. Solar Rrl, 2019, 3, 1900102.	5.8	4
22	PV Degradation – Mounting & Temperature. , 2019, , .		11
23	Numerical Validation of an Algorithm for Combined Soiling and Degradation Analysis of Photovoltaic Systems. , 2019, , .		8
24	Activation Energy for Solder Bond Degradation: Thermal Cycling of Field-aged Modules at Multiple Upper Temperatures. , 2019, , .		2
25	Field-Aging Test Bed for Behind-the-Meter PV + Energy Storage. , 2019, , .		2
26	Analysis of the Long-Term Performance Degradation of Crystalline Silicon Photovoltaic Modules in Tropical Climates. IEEE Journal of Photovoltaics, 2019, 9, 266-271.	2.5	34
27	Fleet-Scale Energy-Yield Degradation Analysis Applied to Hundreds of Residential and Nonresidential Photovoltaic Systems. IEEE Journal of Photovoltaics, 2019, 9, 476-482.	2.5	19
28	Robust PV Degradation Methodology and Application. IEEE Journal of Photovoltaics, 2018, 8, 525-531.	2.5	121
29	Silicon Heterojunction System Field Performance. IEEE Journal of Photovoltaics, 2018, 8, 177-182.	2.5	53
30	Activation Energy Determination for Photovoltaic Encapsulant Discoloration by Indoor Accelerated UV Testing. , 2018, , .		5
31	Photovoltaic failure and degradation modes. Progress in Photovoltaics: Research and Applications, 2017, 25, 318-326.	8.1	251
32	Evaluation and modeling of the potential effects of a module manufacturing anomaly. Progress in Photovoltaics: Research and Applications, 2017, 25, 982-988.	8.1	4
33	PV degradation curves: nonâ€linearities and failure modes. Progress in Photovoltaics: Research and Applications, 2017, 25, 583-591.	8.1	109
34	Compendium of photovoltaic degradation rates. Progress in Photovoltaics: Research and Applications, 2016, 24, 978-989.	8.1	374
35	PV degradation methodology comparison $\hat{a} \in \mathbb{C}$ A basis for a standard. , 2016, , .		22
36	Direct analysis of the current density vs. voltage curves of a CdTe module during outdoor exposure. Solar Energy, 2015, 113, 88-100.	6.1	7

Dirk C Jordan

#	Article	IF	CITATIONS
37	Performance and Aging of a 20-Year-Old Silicon PV System. IEEE Journal of Photovoltaics, 2015, 5, 744-751.	2.5	59
38	Field Performance of 1.7 GW of Photovoltaic Systems. IEEE Journal of Photovoltaics, 2015, 5, 243-249.	2.5	13
39	Key parameters in determining energy generated by CPV modules. Progress in Photovoltaics: Research and Applications, 2015, 23, 1250-1259.	8.1	35
40	Performance characterization of cadmium telluride modules validated by utility-scale and test systems. , 2014, , .		7
41	Direct analysis of the current-voltage curves of outdoor-degrading modules. , 2014, , .		0
42	Photovoltaic Investment Risk and Uncertainty for Residential Customers. IEEE Journal of Photovoltaics, 2014, 4, 278-284.	2.5	29
43	The Dark Horse of Evaluating Long-Term Field Performance—Data Filtering. IEEE Journal of Photovoltaics, 2014, 4, 317-323.	2.5	58
44	PV system energy test. , 2014, , .		2
45	Measuring degradation rates of PV systems without irradiance data. Progress in Photovoltaics: Research and Applications, 2014, 22, 851-862.	8.1	12
46	Photovoltaic Degradation Rates—an Analytical Review. Progress in Photovoltaics: Research and Applications, 2013, 21, 12-29.	8.1	942
47	Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Undergoing Degradation by System Voltage Stress. IEEE Journal of Photovoltaics, 2013, 3, 246-253.	2.5	57
48	A framework for a comparative accelerated testing standard for PV modules. , 2013, , .		12
49	Acceleration factor determination for potential-induced degradation in crystalline silicon PV modules. , 2013, , .		15
50	Testing and analysis for lifetime prediction of crystalline silicon PV modules undergoing degradation by system voltage stress. , 2013, , .		1
51	Comparative study of the performance of field-aged photovoltaic modules located in a hot and humid environment. , 2012, , .		7
52	Testing and analysis for lifetime prediction of crystalline silicon PV modules undergoing degradation by system voltage stress. , 2012, , .		4
53	Measuring degradation rates without irradiance data. , 2010, , .		13
54	Dynamic studies on the charging of spacers for high-voltage field-emission displays. Journal of the Society for Information Display, 2008, 16, 631.	2.1	2