Shashank Bishnoi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3440744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of curing temperature and clinker content on hydration and strength development of calcined clay blends. Advances in Cement Research, 2023, 35, 12-25.	1.6	2
2	Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	71
3	Report of RILEM TC 267—TRM: Improvement and robustness study of lime mortar strength test for assessing reactivity of SCMs. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	8
4	A methodology for comparing the chloride penetration severity across different tidal zones. Materials Today: Proceedings, 2022, 65, 697-701.	1.8	1
5	Influence of curing temperature on hydration and microstructural development of ordinary Portland cement. Construction and Building Materials, 2022, 329, 127070.	7.2	8
6	Influence of Clinker Replacement and Curing Temperature on Hydration Kinetics, Strength Development, and Phase Assemblage of Fly Ash–Blended Cements. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	1
7	Durability performance of binary and ternary blended cementitious systems with calcined clay: a RILEM TC 282-CCL, review. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	3.1	9
8	Fresh properties of concrete containing calcined clays: a review by RILEM TC-282 CCL. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	3.1	3
9	Modeling the Variation in Hydration and Strength of Blended Cement–Fly Ash Systems. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	1
10	Impact of Alkali Salts on the Hydration of Ordinary Portland Cement and Limestone–Calcined Clay Cement. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	11
11	Contaminants of concern (CoCs) pivotal in assessing the fate of MSW incineration bottom ash (MIBA): First results from India and analogy between several countries. Waste Management, 2021, 135, 167-181.	7.4	11
12	Limestone calcined clay cement and concrete: A state-of-the-art review. Cement and Concrete Research, 2021, 149, 106564.	11.0	184
13	Understanding the Process of Carbonation in Concrete using Numerical Modeling. Journal of Advanced Concrete Technology, 2021, 19, 1148-1161.	1.8	11
14	Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete. Advances in Cement Research, 2020, 32, 101-111.	1.6	48
15	Performance of low amorphous silica fly ashes in mortars. Advances in Cement Research, 2020, 32, 547-556.	1.6	2
16	Prediction of carbonation using reactivity test methods for pozzolanic materials. Advances in Cement Research, 2020, 32, 297-306.	1.6	10
17	Microstructural modelling of autogenous shrinkage in Portland cement paste at early age. Engineering Computations, 2020, 37, 3171-3186.	1.4	3
18	A numerical approach for designing composite cements with calcined clay and limestone. Cement and Concrete Research, 2020, 138, 106232	11.0	43

SHASHANK BISHNOI

#	Article	IF	CITATIONS
19	A comparison of test methods to assess the strength potential of plain and blended supplementary cementitious materials. Construction and Building Materials, 2020, 256, 119292.	7.2	22
20	Blending of Fly Ashes to Reduce Variability in the Heat of Hydration and Compressive Strength. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	7
21	Influence of properties of interfacial transition zone on elastic modulus of concrete: Evidence from micromechanical modelling. Construction and Building Materials, 2020, 246, 118381.	7.2	16
22	Study on performance enhancement of self-compacting concrete incorporating waste foundry sand. Construction and Building Materials, 2020, 251, 118875.	7.2	36
23	Why Low-Grade Calcined Clays Are the Ideal for the Production of Limestone Calcined Clay Cement (LC3). RILEM Bookseries, 2020, , 125-130.	0.4	11
24	Microstructural Modelling of the Microstructural Development of Limestone Calcined Clay Cement. RILEM Bookseries, 2020, , 403-409.	0.4	0
25	The Influence of Temperature Regime on Performance of Low Clinker Blended Cements. RILEM Bookseries, 2020, , 299-307.	0.4	2
26	Limestone Calcined Clay Cement: Opportunities and Challenges. RILEM Bookseries, 2020, , 793-800.	0.4	3
27	Activation of Early Age Strength in Fly Ash Blended Cement by Adding Limestone Calcined Clay (LC2) Pozzolan. RILEM Bookseries, 2020, , 391-396.	0.4	1
28	Influence of Calcium Sulphate on Hydration of Cements Containing Calcined Clay. RILEM Bookseries, 2020, , 315-322.	0.4	1
29	Industrial production of limestone calcined clay cement: experience and insights. Green Materials, 2019, 7, 15-27.	2.1	38
30	Influence of temperature on hydration and microstructure properties of limestone-calcined clay blended cement. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	3.1	31
31	Hydration and phase assemblage of ternary cements with calcined clay and limestone. Construction and Building Materials, 2019, 222, 64-72.	7.2	86
32	Mechanical Property Evaluation of Composites Based on n+1 Phase Model and Mori–Tanaka Theory. Journal of Engineering Mechanics - ASCE, 2019, 145, .	2.9	7
33	Feasibility of Reuse of Bottom Ash from MSW Waste-to-Energy Plants in India. Environmental Science and Engineering, 2019, , 344-350.	0.2	7
34	Understanding the hydration of dolomite in cementitious systems with reactive aluminosilicates such as calcined clay. Cement and Concrete Research, 2018, 108, 116-128.	11.0	110
35	Effect of the densification of C–S–H on hydration kinetics of tricalcium silicate. Journal of the American Ceramic Society, 2018, 101, 2438-2449.	3.8	16
36	Microstructural modelling of the strength of mortars containing fly ash using µic. Construction and Building Materials, 2018, 163, 912-920.	7.2	16

Shashank Bishnoi

#	Article	IF	CITATIONS
37	Hydration kinetics and mechanisms of carbonates from stone wastes in ternary blends with calcined clay. Construction and Building Materials, 2018, 164, 265-274.	7.2	69
38	Changes in microstructure characteristics of cement paste on carbonation. Cement and Concrete Research, 2018, 109, 184-197.	11.0	278
39	Micro-Chemo-Mechanical Characterization of a Limestone-Calcinated-Clay Cement Paste by Statistical Nanoindentation and Quantitative SEM-EDS. RILEM Bookseries, 2018, , 494-499.	0.4	3
40	Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	144
41	Carbonation resistance of cements containing supplementary cementitious materials and its relation to various parameters of concrete. Construction and Building Materials, 2018, 178, 219-232.	7.2	91
42	Calcined clay limestone cements (LC3). Cement and Concrete Research, 2018, 114, 49-56.	11.0	700
43	Analysis of Pore Structure Characteristics of Carbonated Low-Clinker Cements. Transport in Porous Media, 2018, 124, 861-881.	2.6	20
44	Pilot Scale Production of Limestone Calcined Clay Cement. RILEM Bookseries, 2018, , 69-74.	0.4	2
45	Hydration and Mechanical Properties of Limestone Calcined Clay Cement Produced with Marble Dust. RILEM Bookseries, 2018, , 249-253.	0.4	4
46	The Special Case of North-Eastern India for the Production of LC3. RILEM Bookseries, 2018, , 75-79.	0.4	1
47	Applicability of Lime Reactivity Strength Potential Test for the Reactivity Study of Limestone Calcined Clay Cement. RILEM Bookseries, 2018, , 339-345.	0.4	3
48	Application of Industrially Produced LC3 to Pavements, AAC Blocks and Other Products. RILEM Bookseries, 2018, , 482-487.	0.4	0
49	Modeling the effect of fineness and filler in earlyâ€age hydration of tricalcium silicate. Journal of the American Ceramic Society, 2017, 100, 1178-1194.	3.8	20
50	Characteristics of fly ashes in India for use in cement and concrete. Advances in Cement Research, 2017, , 1-11.	1.6	6
51	Effect of low cost fillers on cement hydration. Construction and Building Materials, 2016, 124, 533-543.	7.2	18
52	Microstructural Modeling of Early-Age Creep in Hydrating Cement Paste. Journal of Engineering Mechanics - ASCE, 2016, 142, .	2.9	19
53	Protocol for Prediction of Durability of New Cements: Application to LC3. RILEM Bookseries, 2015, , 403-409.	0.4	0
54	Durability Characteristics of Sustainable Low Clinker Cements: A Review. RILEM Bookseries, 2015, , 523-530.	0.4	2

Shashank Bishnoi

#	Article	IF	CITATIONS
55	Economic Implications of Limestone Clinker Calcined Clay Cement (LC3) in India. RILEM Bookseries, 2015, , 501-507.	0.4	4
56	Effective Clinker Replacement Using SCM in Low Clinker Cements. RILEM Bookseries, 2015, , 517-521.	0.4	3
57	Microstructural modelling of the elastic properties of tricalcium silicate pastes at early ages. Computers and Concrete, 2015, 16, 125-140.	0.7	6
58	The Role of Calcined Clay Cement vis a vis Construction Practices in India and Their Effects on Sustainability. RILEM Bookseries, 2015, , 411-417.	0.4	0
59	Field Application of Limestone-Calcined Clay Cement in India. RILEM Bookseries, 2015, , 435-441.	0.4	1
60	Raw Material Mapping in Selected Areas of Rajasthan and West Bengal and Their Suitability for Use in Low Carbon Cement Production. RILEM Bookseries, 2015, , 443-449.	0.4	0
61	Geometric limitations of nucleation and growth models: Revisiting the impingement assumption. Cement and Concrete Research, 2013, 46, 30-40.	11.0	6
62	Discussion of the paper "Accelerated growth of calcium silicate hydrates―by Luc Nicoleau. Cement and Concrete Research, 2012, 42, 878-880.	11.0	6
63	Modelling early age hydration kinetics of alite. Cement and Concrete Research, 2012, 42, 903-918.	11.0	105
64	Modeling and simulation of cement hydration kinetics and microstructure development. Cement and Concrete Research, 2011, 41, 1257-1278.	11.0	328
65	µic: A new platform for modelling the hydration of cements. Cement and Concrete Research, 2009, 39, 266-274.	11.0	280
66	Studying nucleation and growth kinetics of alite hydration using μic. Cement and Concrete Research, 2009, 39, 849-860.	11.0	166
67	Strain–temperature hysteresis in concrete under cyclic freeze–thaw conditions. Cement and Concrete Composites, 2008, 30, 374-380.	10.7	34
68	Hydration behaviour of limestone-calcined clay and limestone-slag blends in ternary cement. RILEM Technical Letters, 0, 6, 17-24.	0.0	21
69	Long term moisture penetration in concrete exposed to marine tidal condition. Magazine of Concrete Research, 0, , 1-35.	2.0	2