List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3440678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water-soluble sulfonated phosphorus(v) corrolazines and porphyrazines: the effect of macrocycle contraction and pyrazine ring fusion on spectral, acid–base and photophysical properties. Dalton Transactions, 2022, 51, 1364-1377.	3.3	1
2	Phosphorus(<scp>v</scp>) tetrapyrazinocorrolazines bearing axial aryloxy groups as pH-sensitive fluorophores and photosensitizers. Dalton Transactions, 2022, 51, 5687-5698.	3.3	4
3	Magnesium Phthalocyanines and Tetrapyrazinoporphyrazines: The Influence of a Solvent and a Delivery System on a Dissociation of Central Metal in Acidic Media. Pharmaceuticals, 2022, 15, 409.	3.8	1
4	Comparison of Quenching Efficiencies in Long Triple-Labeled and Double-Labeled TaqMan Oligodeoxynucleotide Probes. Bioconjugate Chemistry, 2022, 33, 788-794.	3.6	3
5	Peripherally Crowded Cationic Phthalocyanines as Efficient Photosensitizers for Photodynamic Therapy. ACS Medicinal Chemistry Letters, 2021, 12, 502-507.	2.8	21
6	Tuning Photodynamic Properties of BODIPY Dyes, Porphyrins' Little Sisters. Molecules, 2021, 26, 4194.	3.8	7
7	Non-peripherally alkylamino-substituted phthalocyanines: Synthesis, spectral, photophysical and acid-base properties. , 2021, , 603-612.		0
8	Subphthalocyanines as Efficient Photosensitizers with Nanomolar Photodynamic Activity against Cancer Cells. Journal of Medicinal Chemistry, 2021, 64, 17436-17447.	6.4	13
9	Self-assembly of azaphthalocyanine–oligodeoxynucleotide conjugates into J-dimers: towards biomolecular logic gates. Organic Chemistry Frontiers, 2020, 7, 445-456.	4.5	5
10	pH-Sensitive subphthalocyanines and subazaphthalocyanines. Dalton Transactions, 2020, 49, 11090-11098.	3.3	11
11	Cationic Versus Anionic Phthalocyanines for Photodynamic Therapy: What a Difference the Charge Makes. Journal of Medicinal Chemistry, 2020, 63, 7616-7632.	6.4	27
12	Synthesis and Jâ€Ðimer Formation of Tetrapyrazinoporphyrazines with Different Functional Groups for Potential Biomolecular Probe Applications. ChemPlusChem, 2020, 85, 527-537.	2.8	2
13	Red-Emitting Fluorescence Sensors for Metal Cations: The Role of Counteranions and Sensing of SCN [–] in Biological Materials. ACS Sensors, 2019, 4, 1552-1559.	7.8	22
14	Magnesium tetrapyrazinoporphyrazines: tuning of the p <i>K</i> _a of red-fluorescent pH indicators. Dalton Transactions, 2019, 48, 6162-6173.	3.3	7
15	Non-peripherally alkylamino-substituted phthalocyanines: Synthesis, spectral, photophysical and acid-base properties. Journal of Porphyrins and Phthalocyanines, 2019, 23, 427-436.	0.8	4
16	Effect of bovine serum albumin on the photodynamic activity of sulfonated tetrapyrazinoporphyrazine. Dyes and Pigments, 2019, 162, 358-366.	3.7	10
17	Efficient Synthesis of a Wideâ€Range Absorbing Azaphthalocyanine Dark Quencher and Its Application to Dualâ€Labeled Oligonucleotide Probes for Quantitative Realâ€Time Polymerase Chain Reactions. Chemistry - A European Journal, 2018, 24, 9658-9666.	3.3	12
18	Tetrapyrazinoporphyrazines and their metal derivatives. Part II: Electronic structure, electrochemical, spectral, photophysical and other application related properties. Coordination Chemistry Reviews, 2018, 361, 1-73.	18.8	66

#	Article	IF	CITATIONS
19	Transalkylation of alkyl aryl sulfides with alkylating agents. Tetrahedron, 2018, 74, 594-599.	1.9	9
20	Photodynamic properties of aza-analogues of phthalocyanines. Photochemical and Photobiological Sciences, 2018, 17, 1749-1766.	2.9	16
21	New red-emitting Schiff base chelates: promising dyes for sensing and imaging of temperature and oxygen <i>via</i> phosphorescence decay time. Journal of Materials Chemistry C, 2018, 6, 8999-9009.	5.5	35
22	An experimental and computational study on isomerically pure, soluble azaphthalocyanines and their complexes and boron azasubphthalocyanines of a varying number of aza units. Organic and Biomolecular Chemistry, 2018, 16, 6586-6599.	2.8	13
23	Perfluorinated porphyrazines. 3. Synthesis, spectral-luminescence and electrochemical properties of perfluorinated octaphenylporphyrazinatozinc(II). Journal of Fluorine Chemistry, 2018, 214, 86-93.	1.7	15
24	Phthalocyanine-triphenylamine dyads: Synthesis, electrochemical, spectral and DFT study. Dyes and Pigments, 2017, 141, 448-456.	3.7	5
25	Phthalocyanines and Tetrapyrazinoporphyrazines with Two Cationic Donuts: High Photodynamic Activity as a Result of Rigid Spatial Arrangement of Peripheral Substituents. Journal of Medicinal Chemistry, 2017, 60, 6060-6076.	6.4	47
26	Tetra(pyrazino[2,3- <i>b</i>]pyrazino)porphyrazines: Synthesis, absorption, photophysical and electrochemical properties of strongly electron-deficient macrocycles. Journal of Porphyrins and Phthalocyanines, 2017, 21, 302-310.	0.8	4
27	OFF-ON-OFF Red-Emitting Fluorescent Indicators for a Narrow pH Window. Chemistry - A European Journal, 2017, 23, 1727-1727.	3.3	1
28	Red-emitting CO2 sensors with tunable dynamic range based on pH-sensitive azaphthalocyanine indicators. Sensors and Actuators B: Chemical, 2017, 246, 1100-1107.	7.8	23
29	OFFâ€ONâ€OFF Redâ€Emitting Fluorescent Indicators for a Narrow pH Window. Chemistry - A European Journal, 2017, 23, 1795-1804.	3.3	17
30	Bulky 2,6-diphenylphenylsulfanyl substituents efficiently inhibit aggregation in phthalocyanines and tetrapyrazinoporphyrazines and control their photophysical and electrochemical properties. Dyes and Pigments, 2017, 136, 715-723.	3.7	21
31	Metalâ€Cation Recognition in Water by a Tetrapyrazinoporphyrazineâ€Based Tweezer Receptor. Chemistry - A European Journal, 2016, 22, 2417-2426.	3.3	22
32	Predominant effect of connecting atom and position of substituents on azomethine nitrogens' basicity in phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1122-1133.	0.8	9
33	Tetra(3,4-pyrido)porphyrazines Caught in the Cationic Cage: Toward Nanomolar Active Photosensitizers. Journal of Medicinal Chemistry, 2016, 59, 9443-9456.	6.4	31
34	Large-Scale Synthesis of Piperazine-2,6-dione and Its Use in the Synthesis of Dexrazoxane Analogues. Synthesis, 2016, 48, 4580-4588.	2.3	3
35	Anionic hexadeca-carboxylate tetrapyrazinoporphyrazine: synthesis and in vitro photodynamic studies of a water-soluble, non-aggregating photosensitizer. RSC Advances, 2016, 6, 10064-10077.	3.6	17
36	Tetrapyrazinoporphyrazines and their metal derivatives. Part I: Synthesis and basic structural information. Coordination Chemistry Reviews, 2016, 309, 107-179.	18.8	82

#	Article	IF	CITATIONS
37	Phenolâ€Substituted Tetrapyrazinoporphyrazines: pHâ€Dependent Fluorescence in Basic Media. Chemistry - A European Journal, 2015, 21, 14382-14392.	3.3	23
38	Synthesis and Photophysical, Electrochemical and Theoretical Study of ThiÂazoleâ€Annelated Phthalocyanines. European Journal of Organic Chemistry, 2015, 2015, 7053-7068.	2.4	5
39	The role of the size of aza-crown recognition moiety in azaphthalocyanine fluorescence sensors for alkali and alkaline earth metal cations. Dyes and Pigments, 2015, 121, 178-187.	3.7	31
40	Far-Red-Absorbing Cationic Phthalocyanine Photosensitizers: Synthesis and Evaluation of the Photodynamic Anticancer Activity and the Mode of Cell Death Induction. Journal of Medicinal Chemistry, 2015, 58, 1736-1749.	6.4	95
41	Peripheral substitution as a tool for tuning electron-accepting properties of phthalocyanine analogs in intramolecular charge transfer. Dalton Transactions, 2015, 44, 6961-6971.	3.3	25
42	Photophysical and theoretical studies of peripherally halogenated octaphenoxyphthalocyanines. RSC Advances, 2015, 5, 58854-58864.	3.6	14
43	Systematic investigation of phthalocyanines, naphthalocyanines, and their aza-analogues. Effect of the isosteric aza-replacement in the core. Dalton Transactions, 2015, 44, 13220-13233.	3.3	36
44	Heteroatom-substituted tetra(3,4-pyrido)porphyrazines: a stride toward near-infrared-absorbing macrocycles. Organic and Biomolecular Chemistry, 2015, 13, 5608-5612.	2.8	15
45	The effect of substitutents at alkylsulfanyl/arylsulfanyl non-peripherally substituted phthalocyanines: Spectral and photophysical properties, basicity and photostability. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1095-1106.	0.8	10
46	1,2,5â€Chalcogenadiazoleâ€Annulated Tripyrazinoporphyrazines: Synthesis, Spectral Characteristics, and Influence of the Heavy Atom Effect on Their Photophysical Properties. European Journal of Organic Chemistry, 2015, 2015, 596-604.	2.4	25
47	Structural factors influencing the intramolecular charge transfer and photoinduced electron transfer in tetrapyrazinoporphyrazines. Physical Chemistry Chemical Physics, 2014, 16, 5440.	2.8	26
48	Role of Steric Hindrance in the Newman-Kwart Rearrangement and in the Synthesis and Photophysical Properties of Arylsulfanyl Tetrapyrazinoporphyrazines. Journal of Organic Chemistry, 2014, 79, 2082-2093.	3.2	37
49	Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy. Chemical Communications, 2013, 49, 11149.	4.1	133
50	Photophysical properties of CdSe quantum dot self-assemblies with zinc phthalocyanines and azaphthalocyanines. Photochemical and Photobiological Sciences, 2013, 12, 743.	2.9	10
51	Azaphthalocyanines: Red Fluorescent Probes for Cations. Chemistry - A European Journal, 2013, 19, 5025-5028.	3.3	24
52	The effect of the number of carbohydrate moieties on the azaphthalocyanine properties. Dalton Transactions, 2012, 41, 10596.	3.3	10
53	Effect of intramolecular charge transfer on fluorescence and singlet oxygen production of phthalocyanine analogues. Dalton Transactions, 2012, 41, 11651.	3.3	23
54	Azaphthalocyanines with fused triazolo rings: formation of sterically stressed constitutional isomers. Chemical Communications, 2012, 48, 4326.	4.1	19

#	Article	IF	CITATIONS
55	Heavy metal effects on physicochemical properties of non-aggregated azaphthalocyanine derivatives. Journal of Porphyrins and Phthalocyanines, 2012, 16, 817-825.	0.8	25
56	Magnesium Azaphthalocyanines: An Emerging Family of Excellent Red-Emitting Fluorophores. Inorganic Chemistry, 2012, 51, 4215-4223.	4.0	85
57	New highly soluble phenoxy-substituted phthalocyanine and azaphthalocyanine derivatives: Synthesis, photochemical and photophysical studies and atypical aggregation behavior. Dyes and Pigments, 2012, 95, 351-357.	3.7	40
58	Synthesis of Unsymmetrical Alkyloxy/Aryloxyâ€azaphthalocyanines Based on a Transetherification Reaction. European Journal of Organic Chemistry, 2011, 2011, 5879-5886.	2.4	11
59	Redâ€Emitting Dyes with Photophysical and Photochemical Properties Controlled by pH. Chemistry - A European Journal, 2011, 17, 14273-14282.	3.3	29
60	Synthesis of mono-, di-, tri- and tetracarboxy azaphthalocyanines as potential dark quenchers. Dyes and Pigments, 2011, 91, 112-119.	3.7	20
61	Synthesis of new azaphthalocyanine dark quencher and evaluation of its quenching efficiency with different fluorophores. Tetrahedron, 2011, 67, 5956-5963.	1.9	18
62	Photodynamically active phthalocyanine building blocks for click chemistry. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1062-1069.	0.8	7
63	Tetra[6,7]quinoxalinoporphyrazines: The Effect of an Additional Benzene Ring on Photophysical and Photochemical Properties. European Journal of Organic Chemistry, 2010, 2010, 732-739.	2.4	13
64	A phthalocyanine–mestranol conjugate for photodynamic therapy prepared via click chemistry. Tetrahedron Letters, 2010, 51, 1016-1018.	1.4	25
65	The synthesis, photochemical and photophysical properties of zinc aryloxy- and alkyloxy azaphthalocyanines. Dyes and Pigments, 2010, 87, 173-179.	3.7	13
66	Synthesis, Properties and <i>In Vitro</i> Photodynamic Activity of Waterâ€soluble Azaphthalocyanines and Azanaphthalocyanines. Photochemistry and Photobiology, 2010, 86, 168-175.	2.5	39
67	Influence of protonation of peripheral substituents on photophysical and photochemical properties of tetrapyrazinoporphyrazines. Journal of Porphyrins and Phthalocyanines, 2010, 14, 582-591.	0.8	25
68	Solid-Phase Synthesis of Azaphthalocyanineâ^'Oligonucleotide Conjugates and Their Evaluation As New Dark Quenchers of Fluorescence. Bioconjugate Chemistry, 2010, 21, 1872-1879.	3.6	32
69	Ultrafast intramolecular charge transfer in tetrapyrazinoporphyrazines controls the quantum yields of fluorescence and singlet oxygen. Physical Chemistry Chemical Physics, 2010, 12, 2555.	2.8	41
70	Tetrapyrazinoporphyrazines with different number of peripheral pyridyl rings: Synthesis, photophysical and photochemical properties. Dyes and Pigments, 2009, 81, 35-39.	3.7	13
71	Zinc azaphthalocyanines with thiophen-2-yl, 5-methylthiophen-2-yl and pyridin-3-yl peripheral substituents: Additive substituent contributions to singlet oxygen production. Dyes and Pigments, 2009, 82, 276-285.	3.7	19
72	Effective Monofunctional Azaphthalocyanine Photosensitizers for Photodynamic Therapy. Australian Journal of Chemistry, 2009, 62, 425.	0.9	36

#	Article	IF	CITATIONS
73	Selfâ€Assembled Azaphthalocyanine Dimers with Higher Fluorescence and Singlet Oxygen Quantum Yields than the Corresponding Monomers. European Journal of Organic Chemistry, 2008, 2008, 3260-3263.	2.4	38
74	Syntheses of octasubstituted zinc azaphthalocyanines with thiophene or thiophene combined with sulfanyl, amino or imido substituents: Influence of the substituents on photochemical and photophysical properties. Polyhedron, 2008, 27, 1368-1374.	2.2	8
75	The synthesis and characterization of metal-free, unsymmetrical azaphthalocyanines with hydroxy groups and their complex formation with pyridine. Dyes and Pigments, 2008, 78, 231-238.	3.7	16
76	Azaphthalocyanines Containing Pyrazine Rings with Focus on the Alkylheteroatom, Aryl and Heteroaryl Substitution and Properties Important in Photodynamic Therapy. Macroheterocycles, 2008, 1, 21-29.	0.5	22