Ashraf Abousalem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/344055/publications.pdf

Version: 2024-02-01

45 papers 1,577 citations

279701 23 h-index 38 g-index

45 all docs 45 docs citations

45 times ranked

618 citing authors

#	Article	IF	CITATIONS
1	Novel triphenyl imidazole based on 8-hydroxyquinoline as corrosion inhibitor for mild steel in molar hydrochloric acid: experimental and theoretical investigations. Journal of Applied Electrochemistry, 2022, 52, 413-433.	1.5	15
2	Novel cationic aryl bithiophene/terthiophene derivatives as corrosion inhibitors by chemical, electrochemical and surface investigations. Scientific Reports, 2022, 12, 3192.	1.6	16
3	Detailed experimental and computational explorations of pyran derivatives as corrosion inhibitors for mild steel in 1.0ÂM HCl: Electrochemical/surface studies, DFT modeling, and MC simulation. Journal of Molecular Structure, 2022, 1261, 132784.	1.8	34
4	Experimental, DFT and MC simulation analysis of Vicia Sativa weed aerial extract as sustainable and eco-benign corrosion inhibitor for mild steel in acidic environment. Sustainable Chemistry and Pharmacy, 2022, 29, 100785.	1.6	28
5	New N-Heterocyclic Compounds Based on 8-Hydroxyquinoline as Efficient Corrosion Inhibition for Mild Steel in HCl Solution: Experimental and Theoretical Assessments. Arabian Journal for Science and Engineering, 2021, 46, 257-274.	1.7	20
6	Experimental and surface morphological studies of corrosion inhibition on carbon steel in HCl solution using some new hydrazide derivatives. RSC Advances, 2021, 11, 13497-13512.	1.7	19
7	S-Thiazine as effective inhibitor of mild steel corrosion in HCl solution: Synthesis, experimental, theoretical and surface assessment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126127.	2.3	46
8	Corrosion inhibition of carbon steel in hydrochloric acid by cationic arylthiophenes as new eco-friendly inhibitors: Experimental and quantum chemical study. Chinese Journal of Chemical Engineering, 2021, 40, 197-217.	1.7	5
9	Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations. Journal of Molecular Liquids, 2021, 334, 116520.	2.3	62
10	Appraisal of corrosion inhibiting ability of new 5-N-((alkylamino)methyl)quinolin-8-ol analogs for C40E steel in sulfuric acid. International Journal of Hydrogen Energy, 2021, 46, 30246-30266.	3.8	22
11	Probing the effect of newly synthesized phenyltrimethylammonium tetrachloroaluminate ionic liquid as an inhibitor for carbon steel corrosion. Applied Surface Science Advances, 2021, 6, 100150.	2.9	13
12	Effectiveness of some novel heterocyclic compounds as corrosion inhibitors for carbon steel in 1 M HCl using practical and theoretical methods. RSC Advances, 2021, 11, 19294-19309.	1.7	17
13	Experimental and computational chemical studies on the corrosion inhibitive properties of carbonitrile compounds for carbon steel in aqueous solutions. Scientific Reports, 2021, 11, 21672.	1.6	22
14	Experimental and computational chemical studies on the cationic furanylnicotinamidines as novel corrosion inhibitors in aqueous solutions. Chinese Journal of Chemical Engineering, 2020, 28, 477-491.	1.7	8
15	Evaluating prolonged corrosion inhibition performance of benzyltributylammonium tetrachloroaluminate ionic liquid using electrochemical analysis and Monte Carlo simulation. Journal of Molecular Liquids, 2020, 297, 111855.	2.3	36
16	Synthetic, spectroscopic characterization, empirical and theoretical investigations on the corrosion inhibition characteristics of mild steel in molar hydrochloric acid by three novel 8-hydroxyquinoline derivatives. Ionics, 2020, 26, 503-522.	1.2	39
17	Luminescent coatings: White-color luminescence from a simple and single chromophore with high anticorrosion efficiency. Dyes and Pigments, 2020, 175, 108146.	2.0	24
18	Electrochemical, thermodynamic and theoretical studies of some imidazole derivatives compounds as acid corrosion inhibitors for mild steel. Journal of Molecular Liquids, 2020, 319, 114063.	2.3	81

#	Article	IF	CITATIONS
19	Chemically functionalized of 8-hydroxyquinoline derivatives as efficient corrosion inhibition for steel in 1.0ÂM HCl solution: Experimental and theoretical studies. Surfaces and Interfaces, 2020, 21, 100695.	1.5	38
20	Synthesis and characterization of novel Cu (II) and Zn (II) complexes of 5-{[(2-Hydroxyethyl) sulfanyl] methyl}-8-hydroxyquinoline as effective acid corrosion inhibitor by experimental and computational testings. Chemical Physics Letters, 2020, 754, 137771.	1.2	50
21	Exploring the inhibition performance of tetrachloroferrate ionic liquid in acid environment using scanning electrochemical microscope and theoretical approaches. Surfaces and Interfaces, 2020, 20, 100594.	1.5	11
22	Evaluation of Corrosion Mitigation Performance of 1-(3,4,5-Trimethoxyphenylmethylidene)-2-Naphthylamine (TMPNA) Schiff's Base on Carbon Steel Using Electrochemical, Thermodynamic and Theoretical Approaches. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	1.2	2
23	The inhibition action of methoxy-substituted phenylthienyl benzamidines on the corrosion of carbon steel in hydrochloric acid medium. Journal of Molecular Liquids, 2020, 312, 113267.	2.3	15
24	Selective synthesis of new sugars based on 8-hydroxyquinoline as corrosion inhibitors for mild steel in HCl solution-effect of the saturated hydrocarbon chain: Theoretical and experimental studies. Inorganic Chemistry Communication, 2020, 118, 108019.	1.8	17
25	Chemical, Electrochemical, Theoretical and Surface Morphology Studies of Triazepine Carboxylate Compounds as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Medium. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	1.2	7
26	8-Hydroxyquinoline based chitosan derived carbohydrate polymer as biodegradable and sustainable acid corrosion inhibitor for mild steel: Experimental and computational analyses. International Journal of Biological Macromolecules, 2020, 155, 645-655.	3.6	120
27	Anti-corrosion Properties of 2-Phenyl-4(3H)-quinazolinone-Substituted Compounds: Electrochemical, Quantum Chemical, Monte Carlo, and Molecular Dynamic Simulation Investigation. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	1.2	25
28	Investigation of imidazole derivatives as corrosion inhibitors for mild steel in sulfuric acidic environment: experimental and theoretical studies. Ionics, 2020, 26, 5251-5272.	1.2	62
29	Synthesis, characterization and corrosion inhibition potential of newly benzimidazole derivatives: Combining theoretical and experimental study. Surfaces and Interfaces, 2020, 18, 100442.	1.5	29
30	Synthesis, antibacterial study and corrosion inhibition potential of newly synthesis oxathiolan and triazole derivatives of 8-hydroxyquinoline: Experimental and theoretical approach. Surfaces and Interfaces, 2020, 19, 100468.	1.5	33
31	Sample synthesis, characterization, experimental and theoretical study of the inhibitory power of new 8-hydroxyquinoline derivatives for mild steel in 1.0ÂM HCl. Journal of Molecular Structure, 2020, 1213, 128155.	1.8	58
32	Experimental, DFT calculations and MC simulations concept of novel quinazolinone derivatives as corrosion inhibitor for mild steel in 1.0' HCl medium. Journal of Molecular Liquids, 2020, 312, 113413.	2.3	52
33	Impact of some pyrrolidinium ionic liquids on copper dissolution behavior in acidic environment: experimental, morphological and theoretical insights. RSC Advances, 2019, 9, 20760-20777.	1.7	21
34	Comprehensive investigations on the action of cationic terthiophene and bithiophene as corrosion inhibitors: experimental and theoretical studies. New Journal of Chemistry, 2019, 43, 768-789.	1.4	47
35	Corrosion mitigation of carbon steel by spin coating with Ag–TiO2 gel films in acidic solution: Fabrication, characterization, electrochemical and quantum chemical approaches. Surface and Coatings Technology, 2019, 374, 852-867.	2.2	14
36	Novel Cu (II) and Zn (II) complexes of 8-hydroxyquinoline derivatives as effective corrosion inhibitors for mild steel in 1.0â€M HCl solution: Computer modeling supported experimental studies. Journal of Molecular Liquids, 2019, 290, 111243.	2.3	49

#	Article	IF	CITATION
37	Experimental, quantum chemical and molecular simulation studies on the action of arylthiophene derivatives as acid corrosion inhibitors. Journal of Molecular Liquids, 2019, 290, 111178.	2.3	41
38	Experimental and computational simulations for the effect of new Arylfuranylnicotinamidine derivatives against degradation of carbon steel in acid solutions. Multidiscipline Modeling in Materials and Structures, 2019, 15, 1294-1317.	0.6	2
39	Inhibitive Properties and Computational Approach of Organoselenides on Mild Steel Corrosion in Acidic Environment. Russian Journal of Electrochemistry, 2019, 55, 1320-1335.	0.3	4
40	Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium. Heliyon, 2019, 5, e02759.	1.4	93
41	A complementary experimental and in silico studies on the action of fluorophenyl‑2,2‒bichalcophenes as ecofriendly corrosion inhibitors and biocide agents. Journal of Molecular Liquids, 2019, 276, 255-274.	2.3	47
42	Molecular Dynamics, Monte-Carlo Simulations and Atomic Force Microscopy to Study the Interfacial Adsorption Behaviour of Some Triazepine Carboxylate Compounds as Corrosion Inhibitors in Acid Medium. Journal of Bio- and Tribo-Corrosion, 2019, 5, 1.	1.2	57
43	Evaluation of 4-amidinophenyl-2,2′-bithiophene and its aza-analogue as novel corrosion inhibitors for CS in acidic media: Experimental and theoretical study. Journal of Molecular Liquids, 2017, 240, 372-388.	2.3	68
44	Experimental and theoretical studies on corrosion inhibition of 4-amidinophenyl-2,2′-bifuran and its analogues in acidic media. RSC Advances, 2017, 7, 46414-46430.	1.7	59
45	Mitigation of corrosion of carbon steel in acidic solutions using an aqueous extract of Tilia cordata as green corrosion inhibitor. International Journal of Industrial Chemistry, 2017, 8, 61-73.	3.1	49