
Konstantin V Korotkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3440484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The type II secretion system: biogenesis, molecular architecture and mechanism. Nature Reviews Microbiology, 2012, 10, 336-351.	13.6	435
2	Take five — Type VII secretion systems of Mycobacteria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1707-1716.	1.9	180
3	Crystal Structure of the N-Terminal Domain of the Secretin GspD from ETEC Determined with the Assistance of a Nanobody. Structure, 2009, 17, 255-265.	1.6	164
4	Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1625-34.	3.3	160
5	Secretins: dynamic channels for protein transport across membranes. Trends in Biochemical Sciences, 2011, 36, 433-443.	3.7	146
6	Structure-Expression Relationships of the 15-kDa Selenoprotein Gene. Journal of Biological Chemistry, 2000, 275, 35540-35547.	1.6	145
7	Association between the 15-kDa Selenoprotein and UDP-glucose:Clycoprotein Glucosyltransferase in the Endoplasmic Reticulum of Mammalian Cells. Journal of Biological Chemistry, 2001, 276, 15330-15336.	1.6	142
8	Mammalian Selenoprotein in Which Selenocysteine (Sec) Incorporation Is Supported by a New Form of Sec Insertion Sequence Element. Molecular and Cellular Biology, 2002, 22, 1402-1411.	1.1	142
9	Structure of the GspK–GspI–GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nature Structural and Molecular Biology, 2008, 15, 462-468.	3.6	131
10	Structure of the cholera toxin secretion channel in its closed state. Nature Structural and Molecular Biology, 2010, 17, 1226-1232.	3.6	128
11	The 1.6-A crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3137-3142.	3.3	104
12	ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics. Acta Neuropathologica, 2016, 132, 563-576.	3.9	93
13	Structural and Functional Studies on the Interaction of GspC and GspD in the Type II Secretion System. PLoS Pathogens, 2011, 7, e1002228.	2.1	83
14	Structure of the <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> type <scp>VII</scp> secretion system chaperone <scp>EspG</scp> ₅ in complex with <scp>PE</scp> 25– <scp>PPE</scp> 41 dimer. Molecular Microbiology, 2014, 94, 367-382.	1.2	83
15	Selenocysteine-Containing Thioredoxin Reductase in C. elegans. Biochemical and Biophysical Research Communications, 1999, 259, 244-249.	1.0	82
16	Nematode selenoproteome: the use of the selenocysteine insertion system to decode one codon in an an an animal genome?. Nucleic Acids Research, 2005, 33, 2227-2238.	6.5	76
17	Hsp31, the Escherichia coli yedU Gene Product, Is a Molecular Chaperone Whose Activity Is Inhibited by ATP at High Temperatures. Journal of Biological Chemistry, 2002, 277, 46026-46034.	1.6	73
18	Nanobody-aided structure determination of the Epsl:EpsJ pseudopilin heterodimer from Vibrio vulnificus. Journal of Structural Biology, 2009, 166, 8-15.	1.3	72

Konstantin V Korotkov

#	Article	IF	CITATIONS
19	Assembly of the Type II Secretion System such as Found in Vibrio cholerae Depends on the Novel Pilotin AspS. PLoS Pathogens, 2013, 9, e1003117.	2.1	59
20	Mycosins Are Required for the Stabilization of the ESX-1 and ESX-5 Type VII Secretion Membrane Complexes. MBio, 2016, 7, .	1.8	54
21	Discovery of glycerol phosphate modification on streptococcal rhamnose polysaccharides. Nature Chemical Biology, 2019, 15, 463-471.	3.9	53
22	Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis. Journal of Structural Biology, 2015, 191, 236-244.	1.3	51
23	Architecture, Function, and Substrates of the Type II Secretion System. EcoSal Plus, 2019, 8, .	2.1	51
24	Structural and Functional Studies of EpsC, a Crucial Component of the Type 2 Secretion System from Vibrio cholerae. Journal of Molecular Biology, 2006, 363, 311-321.	2.0	50
25	Structure of the Minor Pseudopilin EpsH from the Type 2 Secretion System of Vibrio cholerae. Journal of Molecular Biology, 2008, 377, 91-103.	2.0	49
26	The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of Vibrio cholerae. Journal of Structural Biology, 2009, 166, 303-315.	1.3	49
27	3,5-Substituted phenyl galactosides as leads in designing effective cholera toxin antagonists. Bioorganic and Medicinal Chemistry, 2004, 12, 907-920.	1.4	44
28	The Crystal Structure of a Binary Complex of two Pseudopilins: EpsI and EpsJ from the Type 2 Secretion System of Vibrio vulnificus. Journal of Molecular Biology, 2008, 375, 471-486.	2.0	43
29	Calcium Is Essential for the Major Pseudopilin in the Type 2 Secretion System. Journal of Biological Chemistry, 2009, 284, 25466-25470.	1.6	41
30	The binding of cholera toxin to the periplasmic vestibule of the type II secretion channel. Channels, 2011, 5, 215-218.	1.5	41
31	Structural biology and structure-based inhibitor design of cholera toxin and heat-labile enterotoxin. International Journal of Medical Microbiology, 2004, 294, 217-223.	1.5	36
32	Structural and functional insights into the role of BamD and BamE within the β-barrel assembly machinery in Neisseria gonorrhoeae. Journal of Biological Chemistry, 2018, 293, 1106-1119.	1.6	36
33	Crystal structure of the full-length ATPase GspE from the Vibrio vulnificus type II secretion system in complex with the cytoplasmic domain of GspL. Journal of Structural Biology, 2014, 187, 223-235.	1.3	35
34	Understanding specificity of the mycosin proteases in ESX/type VII secretion by structural and functional analysis. Journal of Structural Biology, 2013, 184, 115-128.	1.3	33
35	The molecular mechanism of N-acetylglucosamine side-chain attachment to the Lancefield group A carbohydrate in Streptococcus pyogenes. Journal of Biological Chemistry, 2017, 292, 19441-19457.	1.6	33

Targeting phosphatases of regenerating liver (PRLs) in cancer. , 2018, 190, 128-138.

33

#	Article	IF	CITATIONS
37	Oligomerization of EpsE Coordinates Residues from Multiple Subunits to Facilitate ATPase Activity. Journal of Biological Chemistry, 2011, 286, 10378-10386.	1.6	27
38	Structures of EccB1 and EccD1 from the core complex of the mycobacterial ESX-1 type VII secretion system. BMC Structural Biology, 2016, 16, 5.	2.3	27
39	Crystal structure of the N-terminal domain of EccA1 ATPase from the ESX-1 secretion system of Mycobacterium tuberculosis. Proteins: Structure, Function and Bioinformatics, 2014, 82, 159-163.	1.5	26
40	Genetic and Functional Analysis of Mammalian Sep15 Selenoprotein. Methods in Enzymology, 2002, 347, 187-197.	0.4	25
41	A new native EcHsp31 structure suggests a key role of structural flexibility for chaperone function. Protein Science, 2004, 13, 269-277.	3.1	25
42	Crystal Structure and Mutational Analysis of the DaaE Adhesin of Escherichia coli. Journal of Biological Chemistry, 2006, 281, 22367-22377.	1.6	24
43	Functional and Structural Characterization of Vibrio cholerae Extracellular Serine Protease B, VesB. Journal of Biological Chemistry, 2014, 289, 8288-8298.	1.6	24
44	The <i>Mycobacterium tuberculosis</i> Pup-proteasome system regulates nitrate metabolism through an essential protein quality control pathway. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3202-3210.	3.3	22
45	Structural Variability of EspG Chaperones from Mycobacterial ESX-1, ESX-3, and ESX-5 Type VII Secretion Systems. Journal of Molecular Biology, 2019, 431, 289-307.	2.0	21
46	Functional and structural studies on the <i>Neisseria gonorrhoeae</i> GmhA, the first enzyme in the <i>glyceroâ€manno</i> â€heptose biosynthesis pathways, demonstrate a critical role in lipooligosaccharide synthesis and gonococcal viability. MicrobiologyOpen, 2017, 6, e00432.	1.2	20
47	Type VII Secretion Substrates of Pathogenic Mycobacteria Are Processed by a Surface Protease. MBio, 2019, 10, .	1.8	20
48	A dodecameric ring-like structure of the N0 domain of the type II secretin from enterotoxigenic Escherichia coli. Journal of Structural Biology, 2013, 183, 354-362.	1.3	19
49	Peptide Inhibitors Targeting the Neisseria gonorrhoeae Pivotal Anaerobic Respiration Factor AniA. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	18
50	Modification of cell wall polysaccharide guides cell division in Streptococcus mutans. Nature Chemical Biology, 2021, 17, 878-887.	3.9	18
51	PE5–PPE4–EspG3 heterotrimer structure from mycobacterial ESX-3 secretion system gives insight into cognate substrate recognition by ESX systems. Journal of Biological Chemistry, 2020, 295, 12706-12715.	1.6	16
52	Novel Antimycobacterial Compounds Suppress NAD Biogenesis by Targeting a Unique Pocket of NaMN Adenylyltransferase. ACS Chemical Biology, 2019, 14, 949-958.	1.6	15
53	Multiple levels of regulation of selenoprotein biosynthesis revealed from the analysis of human glioma cell lines. Biochemical Pharmacology, 2000, 60, 489-497.	2.0	14
54	Novel Mycosin Protease MycP ₁ Inhibitors Identified by Virtual Screening and 4D Fingerprints. Journal of Chemical Information and Modeling, 2014, 54, 1166-1173.	2.5	14

#	Article	IF	CITATIONS
55	Application of the 4D Fingerprint Method with a Robust Scoring Function for Scaffold-Hopping and Drug Repurposing Strategies. Journal of Chemical Information and Modeling, 2014, 54, 2834-2845.	2.5	12
56	Structural analysis of mycobacterial homoserine transacetylases central to methionine biosynthesis reveals druggable active site. Scientific Reports, 2019, 9, 20267.	1.6	12
57	Pentapeptide boronic acid inhibitors of Mycobacterium tuberculosis MycP1 protease. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3546-3548.	1.0	11
58	Crystal structure of the pilotin from the enterohemorrhagic Escherichia coli type II secretion system. Journal of Structural Biology, 2013, 182, 186-191.	1.3	10
59	Targeting an Essential GTPase Obg for the Development of Broad-Spectrum Antibiotics. PLoS ONE, 2016, 11, e0148222.	1.1	10
60	Screening a fragment cocktail library using ultrafiltration. Analytical and Bioanalytical Chemistry, 2011, 401, 1585-1591.	1.9	9
61	SpyB, a Small Heme-Binding Protein, Affects the Composition of the Cell Wall in Streptococcus pyogenes. Frontiers in Cellular and Infection Microbiology, 2016, 6, 126.	1.8	8
62	PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides. Nature Communications, 2022, 13, 590.	5.8	7
63	Architecture, Function, and Substrates of the Type II Secretion System. , 2019, , 227-244.		2
64	Suppressor Mutations in Type II Secretion Mutants of Vibrio cholerae: Inactivation of the VesC Protease. MSphere, 2020, 5, .	1.3	2