Ramesh Kumar Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/344046/publications.pdf Version: 2024-02-01

PAMESH KUMAD SINCH

#	Article	IF	CITATIONS
1	Carbide-Supported PtRu Catalysts for Hydrogen Oxidation Reaction in Alkaline Electrolyte. ACS Catalysis, 2021, 11, 932-947.	11.2	56
2	Metal nanoparticles entrapped in metal matrices. Nanoscale Advances, 2021, 3, 4597-4612.	4.6	7
3	Bioinspired oxygen selective membrane for Zn–air batteries. Journal of Materials Science, 2021, 56, 9382-9394.	3.7	8
4	An Anionâ€Exchange Membrane Fuel Cell Containing Only Abundant and Affordable Materials. Energy Technology, 2021, 9, 2000909.	3.8	46
5	Advances in Catalytic Electrooxidation of Urea: A Review. Energy Technology, 2021, 9, 2100017.	3.8	75
6	A high-temperature anion-exchange membrane fuel cell with a critical raw material-free cathode. Chemical Engineering Journal Advances, 2021, 8, 100153.	5.2	25
7	Heteroatom-Doped Graphites Oxygen Reduction Catalysts for Anion Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-02, 538-538.	0.0	Ο
8	High-Temperature Anion-Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1209-1209.	0.0	0
9	Pdâ€Decorated Tungsten as Ptâ€Free Bimetallic Catalysts for Hydrogen Oxidation Reaction in Alkaline Electrolyte. Israel Journal of Chemistry, 2020, 60, 563-569.	2.3	8
10	Synthesis of CeO <i>_x</i> â€Decorated Pd/C Catalysts by Controlled Surface Reactions for Hydrogen Oxidation in Anion Exchange Membrane Fuel Cells. Advanced Functional Materials, 2020, 30, 2002087.	14.9	58
11	Improved Hydrogen Oxidation Reaction Activity and Stability of Buried Metal-Oxide Electrocatalyst Interfaces. Chemistry of Materials, 2020, 32, 7716-7724.	6.7	38
12	Improving Stability and Kinetics of Alkaline HOR Catalysts – Towards Reduced System Cost. ECS Meeting Abstracts, 2020, MA2020-01, 1686-1686.	0.0	0
13	Characterization of CeO _{x-} decorated Pd/C Catalysts Synthesized By Controlled Surface Reactions for Hydrogen Oxidation in Anion Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2020, MA2020-02, 2110-2110.	0.0	0
14	Functionalization of Graphene—A Critical Overview of its Improved Physical, Chemical and Electrochemical Properties. Carbon Nanostructures, 2019, , 139-173.	0.1	3
15	Electrodeposited Ternary Fe-Mo-P as an Efficient Electrode Material for Bifunctional Water Splitting in Neutral pH. Electrocatalysis, 2018, 9, 682-688.	3.0	11
16	Electrochemical investigation of urea oxidation reaction on β Ni(OH)2 and Ni/Ni(OH)2. Electrochimica Acta, 2018, 278, 405-411.	5.2	112
17	Enhanced Urea Activity of Oxidation on Nickelâ€Deposited Tin Dendrites. ChemElectroChem, 2017, 4, 1037-1043.	3.4	36
18	Electroactivity of NiCr Catalysts for Urea Oxidation in Alkaline Electrolyte. ChemCatChem, 2017, 9, 3374-3379	3.7	69

Ramesh Kumar Singh

#	Article	IF	CITATIONS
19	Hydrogen Interaction (Electrosorption and Evolution) Characteristics of Pd and Pd3Co Alloy Nanoparticles: An In-situ Investigation with Electrochemical Impedance Spectroscopy. Electrochimica Acta, 2016, 194, 199-210.	5.2	51
20	Reconstruction and dissolution of shape-controlled Pt nanoparticles in acidic electrolytes. Physical Chemistry Chemical Physics, 2016, 18, 11220-11232.	2.8	34
21	The role of surface oxygenated-species and adsorbed hydrogen in the oxygen reduction reaction (ORR) mechanism and product selectivity on Pd-based catalysts in acid media. Physical Chemistry Chemical Physics, 2015, 17, 15146-15155.	2.8	62
22	Electrochemical Impedance Spectroscopy of Oxygen Reduction Reaction (ORR) in a Rotating Disk Electrode Configuration: Effect of Ionomer Content and Carbon-Support. Journal of the Electrochemical Society, 2015, 162, F489-F498.	2.9	144
23	Reduction of graphene oxide – a comprehensive electrochemical investigation in alkaline and acidic electrolytes. RSC Advances, 2014, 4, 57781-57790.	3.6	29
24	Oxygen Reduction Reaction and Peroxide Generation on Shape-Controlled and Polycrystalline Platinum Nanoparticles in Acidic and Alkaline Electrolytes. Langmuir, 2014, 30, 8995-9006.	3.5	89
25	Effect of oxidative heat-treatment on electrochemical properties and oxygen reduction reaction (ORR) activity of Pd–Co alloy catalysts. Journal of Electroanalytical Chemistry, 2014, 712, 223-229.	3.8	49
26	Stability issues in Pd-based catalysts: the role of surface Pt in improving the stability and oxygen reduction reaction (ORR) activity. Physical Chemistry Chemical Physics, 2013, 15, 13044.	2.8	46
27	Oxygen Reduction Reaction and Peroxide Generation on Ir, Rh, and their Selenides – A Comparison with Pt and RuSe. Journal of the Electrochemical Society, 2011, 158, B1060.	2.9	28