Pardeep Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3440092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 2017, 10, S1445-S1451.	4.9	700
2	Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review. Applied Materials Today, 2019, 15, 494-524.	4.3	393
3	Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review. Journal of Cleaner Production, 2019, 228, 755-769.	9.3	332
4	C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges. Journal of Materials Chemistry A, 2021, 9, 111-153.	10.3	320
5	Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification. Chemical Engineering Journal, 2020, 391, 123496.	12.7	308
6	Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. Journal of Industrial and Engineering Chemistry, 2018, 67, 28-51.	5.8	302
7	Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review. Journal of Industrial and Engineering Chemistry, 2019, 78, 1-20.	5.8	294
8	Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review. Journal of Hazardous Materials, 2021, 413, 125324.	12.4	293
9	Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arabian Journal of Chemistry, 2020, 13, 3498-3520.	4.9	282
10	Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. Journal of Saudi Chemical Society, 2019, 23, 1119-1136.	5.2	224
11	Carbon quantum dots supported AgI /ZnO/phosphorus doped graphitic carbon nitride as Z-scheme photocatalyst for efficient photodegradation of 2, 4-dinitrophenol. Journal of Environmental Chemical Engineering, 2019, 7, 103272.	6.7	194
12	ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination, 2008, 232, 80-90.	8.2	188
13	Adsorptional photocatalytic degradation of methylene blue onto pectin–CuS nanocomposite under solar light. Journal of Hazardous Materials, 2012, 243, 179-186.	12.4	177
14	Engineering nanostructures of CuO-based photocatalysts for water treatment: Current progress and future challenges. Arabian Journal of Chemistry, 2020, 13, 8424-8457.	4.9	177
15	Fabrication of fluorine doped graphene and SmVO4 based dispersed and adsorptive photocatalyst for abatement of phenolic compounds from water and bacterial disinfection. Journal of Cleaner Production, 2018, 203, 386-399.	9.3	169
16	Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: Role of adsorption in dye degradation. Applied Catalysis A: General, 2014, 486, 159-169.	4.3	164
17	Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: a review. Environmental Chemistry Letters, 2021, 19, 2941-2966.	16.2	162
18	Magnetically recoverable graphitic carbon nitride and NiFe2O4 based magnetic photocatalyst for degradation of oxytetracycline antibiotic in simulated wastewater under solar light. Journal of Environmental Chemical Engineering, 2018, 6, 3874-3883.	6.7	160

#	Article	IF	CITATIONS
19	Ag3PO4 modified phosphorus and sulphur co-doped graphitic carbon nitride as a direct Z-scheme photocatalyst for 2, 4-dimethyl phenol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 22-35.	3.9	153
20	GdVO4 modified fluorine doped graphene nanosheets as dispersed photocatalyst for mitigation of phenolic compounds in aqueous environment and bacterial disinfection. Separation and Purification Technology, 2019, 210, 804-816.	7.9	143
21	Recent advances on water disinfection using bismuth based modified photocatalysts: Strategies and challenges. Journal of Cleaner Production, 2021, 297, 126617.	9.3	143
22	Magnetically separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 photocatalysts supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes. Arabian Journal of Chemistry, 2020, 13, 4324-4340.	4.9	139
23	Converting type II AgBr/VO into ternary Z scheme photocatalyst via coupling with phosphorus doped g-C3N4 for enhanced photocatalytic activity. Separation and Purification Technology, 2019, 227, 115692.	7.9	138
24	An overview on WO3 based photocatalyst for environmental remediation. Journal of Environmental Chemical Engineering, 2021, 9, 105018.	6.7	138
25	Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis. Applied Catalysis B: Environmental, 2014, 147, 340-352.	20.2	135
26	Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review. Materials Science for Energy Technologies, 2019, 2, 509-525.	1.8	134
27	A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. Journal of Environmental Management, 2019, 236, 34-44.	7.8	134
28	Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coordination Chemistry Reviews, 2022, 452, 214298.	18.8	132
29	Environmental and health impacts of contaminants of emerging concerns: Recent treatment challenges and approaches. Chemosphere, 2021, 272, 129492.	8.2	129
30	Adsorptional photocatalytic mineralization of oxytetracycline and ampicillin antibiotics using Bi2O3/BiOCl supported on graphene sand composite and chitosan. Journal of Colloid and Interface Science, 2016, 479, 271-283.	9.4	127
31	Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: a review. Environmental Chemistry Letters, 2021, 19, 271-306.	16.2	124
32	Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chemical Engineering Journal, 2020, 402, 126184.	12.7	123
33	Fabrication of dual Z-scheme photocatalyst via coupling of BiOBr/Ag/AgCl heterojunction with P and S co-doped g-C3N4 for efficient phenol degradation. Arabian Journal of Chemistry, 2020, 13, 4538-4552.	4.9	122
34	Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions. Bioresource Technology, 2020, 297, 122452.	9.6	120
35	Fabrication of Ag3VO4 decorated phosphorus and sulphur co-doped graphitic carbon nitride as a high-dispersed photocatalyst for phenol mineralization and E. coli disinfection. Separation and Purification Technology, 2019, 212, 887-900.	7.9	119
36	Magnetically retrievable Bi 2 WO 6 /Fe 3 O 4 immobilized on graphene sand composite for investigation of photocatalytic mineralization of oxytetracycline and ampicillin. Chemical Engineering Research and Design, 2017, 106, 104-116.	5.6	117

#	Article	IF	CITATIONS
37	Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. Journal of Materiomics, 2021, 7, 388-418.	5.7	117
38	Kinetics of photocatalytic mineralization of oxytetracycline and ampicillin using activated carbon supported ZnO/ZnWO4 nanocomposite in simulated wastewater. , 0, 79, 204-213.		116
39	Photocatalytic mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using graphene sand composite and chitosan supported BiOCl. Journal of Molecular Catalysis A, 2016, 423, 400-413.	4.8	115
40	A review on biodegradation and photocatalytic degradation of organic pollutants: A bibliometric and comparative analysis. Journal of Cleaner Production, 2018, 196, 1669-1680.	9.3	114
41	Polyacrylamide/Ni _{0.02} Zn _{0.98} O Nanocomposite with High Solar Light Photocatalytic Activity and Efficient Adsorption Capacity for Toxic Dye Removal. Industrial & Engineering Chemistry Research, 2014, 53, 15549-15560.	3.7	113
42	Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review. Environmental Research, 2021, 202, 111622.	7.5	113
43	Systematic review on applicability of magnetic iron oxides–integrated photocatalysts for degradation of organic pollutants in water. Materials Today Chemistry, 2019, 14, 100186.	3.5	108
44	Tunable photocatalytic activity of SrTiO3 for water splitting: Strategies and future scenario. Journal of Environmental Chemical Engineering, 2020, 8, 103791.	6.7	105
45	Novel Z-Scheme ZnIn2S4-based photocatalysts for solar-driven environmental and energy applications: Progress and perspectives. Journal of Materials Science and Technology, 2021, 87, 234-257.	10.7	104
46	Review on advances in photocatalytic water disinfection utilizing graphene and graphene derivatives-based nanocomposites. Journal of Environmental Chemical Engineering, 2019, 7, 103132.	6.7	103
47	An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification. Journal of Environmental Chemical Engineering, 2021, 9, 105812.	6.7	101
48	Impact of COVID-19 on greenhouse gases emissions: A critical review. Science of the Total Environment, 2022, 806, 150349.	8.0	101
49	Preparation of bio-based porous carbon by microwave assisted phosphoric acid activation and its use for adsorption of Cr(VI). Journal of Colloid and Interface Science, 2013, 401, 125-132.	9.4	100
50	Superparamagnetic MnFe2O4 dispersed over graphitic carbon sand composite and bentonite as magnetically recoverable photocatalyst for antibiotic mineralization. Separation and Purification Technology, 2017, 172, 498-511.	7.9	100
51	Visible light assisted photodegradation of 2,4-dinitrophenol using Ag2CO3 loaded phosphorus and sulphur co-doped graphitic carbon nitride nanosheets in simulated wastewater. Arabian Journal of Chemistry, 2020, 13, 3196-3209.	4.9	95
52	Islanding of EuVO4 on high-dispersed fluorine doped few layered graphene sheets for efficient photocatalytic mineralization of phenolic compounds and bacterial disinfection. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 528-542.	5.3	93
53	Tailored photocatalysts and revealed reaction pathways for photodegradation of polycyclic aromatic hydrocarbons (PAHs) in water, soil and other sources. Chemosphere, 2020, 260, 127529.	8.2	93
54	Enhanced photocatalytic activity and stability of AgBr/BiOBr/graphene heterojunction for phenol degradation under visible light. Journal of Saudi Chemical Society, 2019, 23, 586-599.	5.2	92

#	Article	IF	CITATIONS
55	2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. Chinese Chemical Letters, 2019, 30, 2065-2088.	9.0	90
56	Fabrication of Ag/AgI/WO3 heterojunction anchored P and S co-doped graphitic carbon nitride as a dual Z scheme photocatalyst for efficient dye degradation. Solid State Sciences, 2020, 100, 106095.	3.2	87
57	Photocatalytic performance and quick recovery of BiOI/Fe3O4@graphene oxide ternary photocatalyst for photodegradation of 2,4-dintirophenol under visible light. Materials Today Chemistry, 2019, 12, 85-95.	3.5	84
58	Perovskite oxide-based photocatalysts for solar-driven hydrogen production: Progress and perspectives. Solar Energy, 2020, 211, 584-599.	6.1	84
59	Indium sulfide-based photocatalysts for hydrogen production and water cleaning: a review. Environmental Chemistry Letters, 2021, 19, 1065-1095.	16.2	83
60	Solar photocatalytic mineralization of antibiotics using magnetically separable NiFe2O4 supported onto graphene sand composite and bentonite. Journal of Water Process Engineering, 2016, 14, 86-100.	5.6	82
61	Solar-Fenton removal of malachite green with novel Fe0-activated carbon nanocomposite. Applied Catalysis A: General, 2014, 476, 9-18.	4.3	81
62	The emerging covalent organic frameworks (COFs) for solar-driven fuels production. Coordination Chemistry Reviews, 2021, 446, 214117.	18.8	79
63	Recent progress on bismuth-based Z-scheme semiconductor photocatalysts for energy and environmental applications. Journal of Environmental Chemical Engineering, 2020, 8, 104505.	6.7	75
64	An overview on polymeric carbon nitride assisted photocatalytic CO2 reduction: Strategically manoeuvring solar to fuel conversion efficiency. Chemical Engineering Science, 2021, 230, 116219.	3.8	72
65	Solar light-facilitated oxytetracycline removal from the aqueous phase utilizing a H ₂ O ₂ /ZnWO ₄ /CaO catalytic system. Journal of Taibah University for Science, 2017, 11, 689-699.	2.5	71
66	Zero valent iron-brick grain nanocomposite for enhanced solar-Fenton removal of malachite green. Separation and Purification Technology, 2014, 133, 429-437.	7.9	70
67	Highly effective degradation of imidacloprid by H2O2/ fullerene decorated P-doped g-C3N4 photocatalyst. Journal of Environmental Chemical Engineering, 2020, 8, 104483.	6.7	68
68	Emerging cocatalysts in TiO2-based photocatalysts for light-driven catalytic hydrogen evolution: Progress and perspectives. Fuel, 2022, 307, 121745.	6.4	68
69	Synergistic photocatalytic dye mitigation and bacterial disinfection using carbon quantum dots decorated dual Z-scheme Manganese Indium Sulfide/Cuprous Oxide/Silver oxide heterojunction. Materials Letters, 2022, 313, 131716.	2.6	66
70	Synergistic photocatalytic mitigation of imidacloprid pesticide and antibacterial activity using carbon nanotube decorated phosphorus doped graphitic carbon nitride photocatalyst. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113, 142-154.	5.3	65
71	Adsorptional removal of methylene blue by guar gum–cerium (IV) tungstate hybrid cationic exchanger. Carbohydrate Polymers, 2014, 101, 684-691.	10.2	64
72	Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications. Journal of Materials Science and Technology, 2022, 108, 208-225.	10.7	63

#	Article	IF	CITATIONS
73	Photocatalytic mineralization of antibiotics using 60%WO3/BiOCl stacked to graphene sand composite and chitosan. Arabian Journal of Chemistry, 2019, 12, 4627-4645.	4.9	61
74	Boosting light-driven CO2 reduction into solar fuels: Mainstream avenues for engineering ZnO-based photocatalysts. Environmental Research, 2021, 197, 111134.	7.5	61
75	Preparation of BSA-ZnWO ₄ Nanocomposites with Enhanced Adsorptional Photocatalytic Activity for Methylene Blue Degradation. International Journal of Photoenergy, 2013, 2013, 1-7.	2.5	58
76	Recent progress on MXenes and MOFs hybrids: Structure, synthetic strategies and catalytic water splitting. International Journal of Hydrogen Energy, 2023, 48, 6560-6574.	7.1	58
77	Progress on the photocatalytic reduction of hexavalent Cr (VI) using engineered graphitic carbon nitride. Chemical Engineering Research and Design, 2021, 152, 663-678.	5.6	57
78	Graphene bentonite supported ZnFe2O4 as superparamagnetic photocatalyst for antibiotic degradationÂ. Advanced Materials Letters, 2017, 8, 229-238.	0.6	57
79	CO2 photoreduction into solar fuels via vacancy engineered bismuth-based photocatalysts: Selectivity and mechanistic insights. Chemical Engineering Journal, 2022, 439, 135563.	12.7	56
80	Cellulose acetate–zirconium (IV) phosphate nano-composite with enhanced photo-catalytic activity. Carbohydrate Polymers, 2013, 95, 434-440.	10.2	55
81	Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125516.	4.7	54
82	An overview on bismuth molybdate based photocatalytic systems: Controlled morphology and enhancement strategies for photocatalytic water purification. Journal of Environmental Chemical Engineering, 2020, 8, 104291.	6.7	54
83	Photocatalytic degradation of Acid Red dye stuff in the presence of activated carbon-TiO2 composite and its kinetic enumeration. Journal of Water Process Engineering, 2016, 12, 20-31.	5.6	52
84	Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4. International Journal of Hydrogen Energy, 2021, 46, 23723-23736.	7.1	50
85	Twin-Tail Surfactant Peculiarity in Superficial Fabrication of Semiconductor Quantum Dots: Toward Structural, Optical, and Electrical Features. Journal of Physical Chemistry C, 2015, 119, 5062-5073.	3.1	49
86	Performance improvement strategies of CuWO4 photocatalyst for hydrogen generation and pollutant degradation. Journal of Environmental Chemical Engineering, 2020, 8, 104230.	6.7	48
87	Construction of carbon nanotube mediated Fe doped graphitic carbon nitride and Ag3VO4 based Z-scheme heterojunction for H2O2 assisted 2,4 dimethyl phenol photodegradation. Separation and Purification Technology, 2020, 247, 116957.	7.9	48
88	Artificial leaf for light-driven CO2 reduction: Basic concepts, advanced structures and selective solar-to-chemical products. Chemical Engineering Journal, 2022, 430, 133031.	12.7	48
89	Emerging trends in photodegradation of petrochemical wastes: a review. Environmental Science and Pollution Research, 2016, 23, 22340-22364.	5.3	47
90	Facile synthesis and extended visible light activity of oxygen and sulphur co-doped carbon nitride quantum dots modified Bi2MoO6 for phenol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112588.	3.9	47

#	Article	IF	CITATIONS
91	Converting Ag3PO4/CdS/Fe doped C3N4 based dual Z-scheme photocatalyst into photo- Fenton system for efficient photocatalytic phenol removal. Journal of Industrial and Engineering Chemistry, 2021, 98, 148-160.	5.8	47
92	Fabrication of visible light active BiFeO3/CuS/SiO2 Z-scheme photocatalyst for efficient dye degradation. Materials Letters, 2020, 270, 127693.	2.6	46
93	Current perspective in metal oxide based photocatalysts for virus disinfection: A review. Journal of Environmental Management, 2022, 308, 114617.	7.8	46
94	Synthesis and Photocatalytic Activity of Ni–Fe Layered Double Hydroxide Modified Sulphur Doped Graphitic Carbon Nitride (SGCN/Ni–Fe LDH) Photocatalyst for 2,4-Dinitrophenol Degradation. Topics in Catalysis, 2020, 63, 1030-1045.	2.8	45
95	Synthesis of Bio-based monomers and polymers using microbes for a sustainable bioeconomy. Bioresource Technology, 2022, 344, 126156.	9.6	44
96	An overview of converting reductive photocatalyst into all solid-state and direct Z-scheme system for water splitting and CO2 reduction. Journal of Industrial and Engineering Chemistry, 2021, 93, 1-27.	5.8	43
97	ZnS-based quantum dots as photocatalysts for water purification. Journal of Water Process Engineering, 2021, 43, 102217.	5.6	41
98	Synthesis of Eu3+â^'doped ZnO/Bi2O3 heterojunction photocatalyst on graphene oxide sheets for visible light-assisted degradation of 2,4-dimethyl phenol and bacteria killing. Solid State Sciences, 2020, 102, 106164.	3.2	39
99	Current status on designing of dual Z-scheme photocatalysts for energy and environmental applications. Journal of Industrial and Engineering Chemistry, 2022, 106, 340-355.	5.8	39
100	An overview of strategies for enhancement in photocatalytic oxidative ability of MoS2 for water purification. Journal of Environmental Chemical Engineering, 2020, 8, 104307.	6.7	38
101	Global challenges in microplastics: From fundamental understanding to advanced degradations toward sustainable strategies. Chemosphere, 2021, 267, 129275.	8.2	38
102	Phenolic compounds degradation: Insight into the role and evidence of oxygen vacancy defects engineering on nanomaterials. Science of the Total Environment, 2021, 800, 149410.	8.0	36
103	Prism-like integrated Bi2WO6Âwith Ag-CuBi2O4 on carbon nanotubes (CNTs) as an efficient and robust S-scheme interfacial charge transfer photocatalyst for the removal of organic pollutants from wastewater. Environmental Science and Pollution Research, 2023, 30, 124530-124545.	5.3	36
104	Metal-free photo-activation of peroxymonosulfate using graphene supported graphitic carbon nitride for enhancing photocatalytic activity. Materials Letters, 2020, 277, 128277.	2.6	35
105	Graphitic carbon nitride based immobilized and non-immobilized floating photocatalysts for environmental remediation. Chemosphere, 2022, 297, 134229.	8.2	35
106	Emerging architecture titanium carbide (Ti3C2Tx) MXene based photocatalyst toward degradation of hazardous pollutants: Recent progress and perspectives. Chemosphere, 2022, 293, 133541.	8.2	34
107	Adsorption properties of Danthron-impregnated carbon nanotubes and their usage for solid phase extraction of heavy metal ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128528.	4.7	34
108	Exploring recent advances in silver halides and graphitic carbon nitride-based photocatalyst for energy and environmental applications. Arabian Journal of Chemistry, 2020, 13, 8271-8300.	4.9	33

#	Article	IF	CITATIONS
109	Preparation, Characterization And Cr(VI)Âadsorption Behavior Study Of Poly(acrylic Acid)Âgrafted Ficus Carica Bast Fiber. Advanced Materials Letters, 2013, 4, 271-276.	0.6	33
110	An overview on cellulose-supported semiconductor photocatalysts for water purification. Nanotechnology for Environmental Engineering, 2021, 6, 1.	3.3	32
111	Preparation And Photocatalytic Activity Of Hydroxyapatite Supported BiOCl Nanocomposite For Oxytetracyline Removal. Advanced Materials Letters, 2016, 7, 312-318.	0.6	32
112	Strategies and perspectives of tailored SnS2 photocatalyst for solar driven energy applications. Solar Energy, 2022, 231, 546-565.	6.1	32
113	Recent advances in silver bromide-based Z-scheme photocatalytic systems for environmental and energy applications: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105157.	6.7	31
114	A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels production. Renewable and Sustainable Energy Reviews, 2021, 148, 111298.	16.4	31
115	Polypyrrole-based nanomaterials: A novel strategy for reducing toxic chemicals and others related to environmental sustainability applications. Chemosphere, 2022, 303, 134993.	8.2	31
116	Solar light assisted degradation of oxytetracycline from water using Bi2O3/Fe3O4 supported graphitic carbon nitride photocatalyst. , 0, 148, 338-350.		30
117	The environmental impact of mass coronavirus vaccinations: A point of view on huge COVID-19 vaccine waste across the globe during ongoing vaccine campaigns. Science of the Total Environment, 2022, 813, 151881.	8.0	29
118	Copper sulfides based photocatalysts for degradation of environmental pollution hazards: A review on the recent catalyst design concepts and future perspectives. Surfaces and Interfaces, 2022, 33, 102182.	3.0	29
119	Degradations of endocrine-disrupting chemicals and pharmaceutical compounds in wastewater with carbon-based nanomaterials: a critical review. Environmental Science and Pollution Research, 2021, 28, 30573-30594.	5.3	28
120	Pectin–cerium (IV) tungstate nanocomposite and its adsorptional activity for removal of methylene blue dye. International Journal of Environmental Science and Technology, 2014, 11, 2015-2024.	3.5	27
121	Peroxymonosulphate-mediated metal-free pesticide photodegradation and bacterial disinfection using well-dispersed graphene oxide supported phosphorus-doped graphitic carbon nitride. Applied Nanoscience (Switzerland), 2020, 10, 4115-4137.	3.1	27
122	Silver-mediated Bi2O3 and graphitic carbon nitride nanocomposite as all solid state Z scheme photocatalyst for imidacloprid pesticide abatement from water. , 0, 171, 344-355.		27
123	Strategies based review on near-infrared light-driven bismuth nanocomposites for environmental pollutants degradation. Chemosphere, 2022, 291, 132781.	8.2	27
124	Toward practical solar-driven photocatalytic water splitting on two-dimensional MoS2 based solid-state Z-scheme and S-scheme heterostructure. Fuel, 2021, 303, 121302.	6.4	26
125	A Strategy to Develop Efficient Ag ₃ PO ₄ â€based Photocatalytic Materials Toward Water Splitting: Perspectives and Challenges. ChemCatChem, 2021, 13, 2965-2987.	3.7	25
126	Metal-organic-framework based catalyst for hydrogen production: Progress and perspectives. International Journal of Hydrogen Energy, 2022, 47, 37552-37568.	7.1	24

#	Article	IF	CITATIONS
127	The practicality and prospects for disinfection control by photocatalysis during and post-pandemic: A critical review. Environmental Research, 2022, 209, 112814.	7.5	24
128	Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion. Applied Materials Today, 2021, 24, 101074.	4.3	23
129	COVID-19 pandemic in Uttarakhand, India: Environmental recovery or degradation?. Journal of Environmental Chemical Engineering, 2021, 9, 106595.	6.7	21
130	Current status of hematite (α-Fe2O3) based Z-scheme photocatalytic systems for environmental and energy applications. Journal of Environmental Chemical Engineering, 2022, 10, 107427.	6.7	21
131	Magnetic molecularly imprinted polymer photocatalysts: synthesis, applications and future perspective. Journal of Industrial and Engineering Chemistry, 2022, 113, 1-14.	5.8	20
132	Nanofiltration technology for removal of pathogens present in drinking water. , 2020, , 463-489.		19
133	Constructing a novel all-solid-state Z-scheme BiVO4/CQDs/FeVO4 photocatalyst and its enhancement to the photocatalytic activity. Materials Letters, 2021, 297, 129940.	2.6	18
134	Photocatalytic Inactivation of Viruses Using Graphitic Carbon Nitride-Based Photocatalysts: Virucidal Performance and Mechanism. Catalysts, 2021, 11, 1448.	3.5	18
135	Photocatalytic degradation aspects of atrazine in water: Enhancement strategies and mechanistic insights. Journal of Cleaner Production, 2022, 367, 133087.	9.3	18
136	Photocatalytic transition-metal-oxides-based p–n heterojunction materials: synthesis, sustainable energy and environmental applications, and perspectives. Journal of Nanostructure in Chemistry, 2023, 13, 129-166.	9.1	17
137	An overview on photocatalytic sulfate radical formation via doped graphitic carbon nitride for water remediation. Current Opinion in Chemical Engineering, 2022, 37, 100841.	7.8	17
138	Z-scheme photocatalytic dye degradation on AgBr/Zn(Co)Fe2O4 photocatalysts supported on nitrogen-doped graphene. Materials Today Sustainability, 2020, 9, 100043.	4.1	16
139	Synthesis of magnetically separable Bi2O2CO3/carbon nanotube/ZnFe2O4 as Z-scheme heterojunction with enhanced photocatalytic activity for water purification. Journal of Sol-Gel Science and Technology, 2020, 95, 408-422.	2.4	16
140	Application of Fusarium sp. immobilized on multi-walled carbon nanotubes for solid-phase extraction and trace analysis of heavy metal cations. Food Chemistry, 2020, 322, 126757.	8.2	16
141	Emerging new-generation covalent organic frameworks composites as green catalysts: design, synthesis and solar to fuel production. Chemical Engineering Journal, 2022, 433, 134594.	12.7	16
142	An environmental approach for the photodegradation of toxic pollutants from wastewater using silver nanoparticles decorated titania-reduced graphene oxide. Journal of Environmental Chemical Engineering, 2021, 9, 105622.	6.7	15
143	Novel step-scheme (S-scheme) heterojunction photocatalysts toward artificial photosynthesis. Materials Letters, 2022, 313, 131781.	2.6	14
144	Potential of graphene based photocatalyst for antiviral activity with emphasis on COVID-19: A review. Journal of Environmental Chemical Engineering, 2022, 10, 107527.	6.7	14

#	Article	IF	CITATIONS
145	Emerging photocatalysts for air purification. Materials Letters, 2021, 288, 129355.	2.6	13
146	Environmental impact of COVID-19 Vaccine waste: A perspective on potential role of natural and biodegradable materials. Journal of Environmental Chemical Engineering, 2022, 10, 107894.	6.7	13
147	Preparation and characterization of nanoscale cadmium oxide using bovine serum albumin as green capping agent and its photocatalytic activity. Desalination and Water Treatment, 2014, 52, 3497-3503.	1.0	12
148	Recent advances and emerging trends in (BiO)2CO3 based photocatalysts for environmental remediation: A review. Surfaces and Interfaces, 2021, 25, 101273.	3.0	12
149	display="inline" id="d1e2116" altimg="si20.svg"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi </mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow>mediated all-solid-state (ASS) 7-scheme photocatalysts towards sustainable energy and environmental</mml:msub></mml:mrow>	>61 > <td>row></td>	row>
150	applications. Environmental Technology and Innovation, 2021, 24, 101972. Green aspects of photocatalysts during corona pandemic: a promising role for the deactivation of COVID-19 virus. RSC Advances, 2022, 12, 13609-13627.	3.6	11
151	Nanoparticles as an emerging tool to alter the gene expression: Preparation and conjugation methods. Materials Today Chemistry, 2020, 17, 100295.	3.5	10
152	Photocatalytic degradation of triclosan in visible-light-induced via CdS@TiO ₂ -rGO nanocomposite. Surface Topography: Metrology and Properties, 2021, 9, 035032.	1.6	10
153	Type-II heterojunction-based magnetic ZnFe2O4@CuFe2O4@SiO2 photocatalyst for photodegradation of toxic dyes from wastewater. Applied Nanoscience (Switzerland), 2023, 13, 3693-3707.	3.1	10
154	Optimizing Velocity Based Adaptive Zone Routing Protocol. , 2010, , .		8
155	Formant Analysis of Punjabi Non-nasalized Vowel Phonemes. , 2011, , .		8
156	Well-defined quantum dots and broadening of optical phonon line from hydrothermal method. RSC Advances, 2016, 6, 102010-102014.	3.6	8
157	Recent progress on elemental sulfur based photocatalysts for energy and environmental applications. Chemosphere, 2022, 305, 135477.	8.2	8
158	Cadmium removal by composite copper oxide/ceria adsorbent from synthetic wastewater. Biomass Conversion and Biorefinery, 2023, 13, 7633-7642.	4.6	7
159	Indigenous knowledge systems in sustainable water conservation and management. , 2020, , 321-328.		6
160	Graphitic Carbon Nitride-based New Advanced Materials for Photocatalytic Applications. Current Analytical Chemistry, 2021, 17, 150-165.	1.2	6
161	Sustainable solutions for indoor pollution abatement during COVID phase: A critical study on current technologies & amp; challenges. Journal of Hazardous Materials Advances, 2022, 7, 100097.	3.0	6
162	Surveillance of omicron variants through wastewater epidemiology: Latest developments in environmental monitoring of pandemic. Science of the Total Environment, 2022, 843, 156724.	8.0	6

#	Article	IF	CITATIONS
163	Exploring a new dimension in MANETs through a new routing protocol. , 2011, , .		4
164	Adsorption and photocatalysis compiled toxic dyes mineralization using graphitic carbon nitride modified ZnFe2O4 and CoFe2O4 photocatalysts supported onto N-doped graphene. , 0, 191, 381-399.		4
165	Recent progress in bismuth oxyhalides-based heterojunctions for CO2 photoreduction. , 2021, , 363-387.		3
166	Metal and Carbon Quantum Dot Photocatalysts for Water Purification. Environmental Chemistry for A Sustainable World, 2021, , 81-118.	0.5	3
167	Photocatalytic Degradation of Azo Dyes in Water. Environmental Chemistry for A Sustainable World, 2021, , 119-146.	0.5	3
168	Adsorptive removal of phenol from aqueous solutions using chemically activated rice husk ash: equilibrium, kinetic, and thermodynamic studies. , 0, 158, 233-244.		3
169	Analysis and Comparison of Antecedent Type of Demonstrative Pronoun in Context of Co-reference Resolution: A Corpus Based Study of Hindi for Monologue and Dialogue. , 2014, , .		2
170	Identifying the Opinion Orientation of Online Product Reviews at Feature Level. International Journal of Information System Modeling and Design, 2017, 8, 92-111.	1.1	2
171	Photocatalytic degradation of petrochemical pollutants. , 2020, , 127-141.		2
172	Annotating Indirect Anaphora for Hindi: A Corpus Based Study. , 2014, , .		1
173	Text Summarization and Its Types. Advances in Computational Intelligence and Robotics Book Series, 2021, , 368-378.	0.4	1
174	Semiautomatic annotation scheme for demonstrative pronoun considering indirect anaphora for Hindi. , 2014, , .		0