## Vasanthan Devaraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3440085/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A facile low-cost paper-based SERS substrate for label-free molecular detection. Sensors and Actuators B: Chemical, 2019, 291, 369-377.                                                                                                                                                                | 7.8  | 68        |
| 2  | Distinguishable Plasmonic Nanoparticle and Gap Mode Properties in a Silver Nanoparticle on a Gold<br>Film System Using Three-Dimensional FDTD Simulations. Nanomaterials, 2018, 8, 582.                                                                                                                | 4.1  | 32        |
| 3  | Investigation of colorimetric biosensor array based on programable surface chemistry of M13<br>bacteriophage towards artificial nose for volatile organic compound detection: From basic<br>properties of the biosensor to practical application. Biosensors and Bioelectronics, 2021, 188, 113339.    | 10.1 | 26        |
| 4  | Hierarchical Cluster Analysis of Medical Chemicals Detected by a Bacteriophage-Based Colorimetric Sensor Array. Nanomaterials, 2020, 10, 121.                                                                                                                                                          | 4.1  | 22        |
| 5  | Optical bioelectronic nose of outstanding sensitivity and selectivity toward volatile organic compounds implemented with genetically engineered bacteriophage: Integrated study of multi-scale computational prediction and experimental validation. Biosensors and Bioelectronics, 2021, 177, 112979. | 10.1 | 20        |
| 6  | Three-Dimensional Plasmonic Nanocluster-Driven Light–Matter Interaction for Photoluminescence<br>Enhancement and Picomolar-Level Biosensing. Nano Letters, 2022, 22, 4702-4711.                                                                                                                        | 9.1  | 20        |
| 7  | Carbon Nanotube Electrodeâ€Based Perovskite–Silicon Tandem Solar Cells. Solar Rrl, 2020, 4, 2000353.                                                                                                                                                                                                   | 5.8  | 19        |
| 8  | A DNA-derived phage nose using machine learning and artificial neural processing for diagnosing lung cancer. Biosensors and Bioelectronics, 2021, 194, 113567.                                                                                                                                         | 10.1 | 19        |
| 9  | Neural mechanism mimetic selective electronic nose based on programmed M13 bacteriophage.<br>Biosensors and Bioelectronics, 2022, 196, 113693.                                                                                                                                                         | 10.1 | 18        |
| 10 | Sensitive and label-free shell isolated Ag NPs@Si architecture based SERS active substrate: FDTD analysis and in-situ cellular DNA detection. Applied Surface Science, 2020, 515, 145955.                                                                                                              | 6.1  | 17        |
| 11 | Gap Plasmon of Virusâ€Templated Biohybrid Nanostructures Uplifting the Performance of Organic<br>Optoelectronic Devices. Advanced Optical Materials, 2020, 8, 1902080.                                                                                                                                 | 7.3  | 17        |
| 12 | Design for an efficient single photon source based on a single quantum dot embedded in a parabolic solid immersion lens. Optics Express, 2016, 24, 8045.                                                                                                                                               | 3.4  | 16        |
| 13 | Numerical Analysis of Nanogap Effects in Metallic Nano-disk and Nano-sphere Dimers: High Near-field<br>Enhancement with Large Gap Sizes. Journal of the Korean Physical Society, 2018, 72, 599-603.                                                                                                    | 0.7  | 16        |
| 14 | Modifying Plasmonic-Field Enhancement and Resonance Characteristics of Spherical Nanoparticles on<br>Metallic Film: Effects of Faceting Spherical Nanoparticle Morphology. Coatings, 2019, 9, 387.                                                                                                     | 2.6  | 15        |
| 15 | A single bottom facet outperforms random multifacets in a nanoparticle-on-metallic-mirror system.<br>Nanoscale, 2020, 12, 22452-22461.                                                                                                                                                                 | 5.6  | 14        |
| 16 | Self-Assembled Nanoporous Biofilms from Functionalized Nanofibrous M13 Bacteriophage. Viruses, 2018, 10, 322.                                                                                                                                                                                          | 3.3  | 13        |
| 17 | Trifluoromethylâ€Group Bearing, Hydrophobic Bulky Cations as Defect Passivators for Highly Efficient,<br>Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100712.                                                                                                                                   | 5.8  | 11        |
| 18 | Revealing Plasmonic Property Similarities and Differences Between a Nanoparticle on a Metallic<br>Mirror and Free Space Dimer Nanoparticle, Journal of the Korean Physical Society, 2019, 75, 313-318                                                                                                  | 0.7  | 9         |

VASANTHAN DEVARAJ

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Improvement of High Affinity and Selectivity on Biosensors Using Genetically Engineered Phage by<br>Binding Isotherm Screening. Viruses, 2019, 11, 248.                                                       | 3.3 | 9         |
| 20 | High quantum efficiency and stability of biohybrid quantum dots nanojunctions in bacteriophage-constructed perovskite. Materials Today Nano, 2021, 13, 100099.                                                | 4.6 | 9         |
| 21 | Deterministic coupling of epitaxial semiconductor quantum dots to hyperbolic metamaterial. Optica, 2018, 5, 832.                                                                                              | 9.3 | 8         |
| 22 | Experimental and numerical evaluation of a genetically engineered M13 bacteriophage with high sensitivity and selectivity for 2,4,6-trinitrotoluene. Organic and Biomolecular Chemistry, 2019, 17, 5666-5670. | 2.8 | 8         |
| 23 | Engineering Efficient Self-Assembled Plasmonic Nanostructures by Configuring Metallic<br>Nanoparticle's Morphology. International Journal of Molecular Sciences, 2021, 22, 10595.                             | 4.1 | 8         |
| 24 | An Accessible Integrated Nanoparticle in a Metallic Hole Structure for Efficient Plasmonic Applications. Materials, 2022, 15, 792.                                                                            | 2.9 | 7         |
| 25 | Influence of cavity geometry towards plasmonic gap tolerance and respective near-field in nanoparticle-on-mirror. Current Applied Physics, 2020, 20, 1335-1341.                                               | 2.4 | 6         |
| 26 | Fabrication of Ultra-smooth 10 nm Silver Films without Wetting Layer. Applied Science and Convergence Technology, 2016, 25, 32-35.                                                                            | 0.9 | 6         |
| 27 | Biomaterial actuator of M13 bacteriophage in dynamically tunable plasmonic coupling structure.<br>Sensors and Actuators B: Chemical, 2022, 369, 132326.                                                       | 7.8 | 6         |
| 28 | Fabrication of Self-Assembled Nanoporous Structures from a Self-Templating M13 Bacteriophage. ACS Applied Nano Materials, 2018, 1, 2851-2857.                                                                 | 5.0 | 5         |
| 29 | Maximum photon extraction from a single quantum dot embedded in a metal/dielectric-cladded cylindrical structure. Journal of the Korean Physical Society, 2016, 68, 1014-1018.                                | 0.7 | 3         |
| 30 | Defining the plasmonic cavity performance based on mode transitions to realize highly efficient device design. Materials Advances, 2020, 1, 139-145.                                                          | 5.4 | 3         |
| 31 | Programmable self-assembly of M13 bacteriophage for micro-color pattern with a tunable colorization. RSC Advances, 2021, 11, 32305-32311.                                                                     | 3.6 | 3         |
| 32 | Dependences of the Near-Field Characteristics of the Nano-Gap Structure on the Difference between<br>Pentagonal and Circular Nano-Wires: A Numerical Study. New Physics: Sae Mulli, 2019, 69, 25-30.          | 0.1 | 0         |