Ramon I Santamaria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3440022/publications.pdf

Version: 2024-02-01

218677 233421 2,141 54 26 45 citations h-index g-index papers 56 56 56 1764 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Grapevine Xylem Sap Is a Potent Elicitor of Antibiotic Production in Streptomyces spp Antibiotics, 2022, 11, 672.	3.7	1
2	Antibiotic Production and Antibiotic Resistance: The Two Sides of AbrB1/B2, a Two-Component System of Streptomyces coelicolor. Frontiers in Microbiology, 2020, 11, 587750.	3.5	6
3	Preparation of a robust immobilized biocatalyst of \hat{l}^2 -1,4-endoxylanase by surface coating with polymers for production of xylooligosaccharides from different xylan sources. New Biotechnology, 2018, 44, 50-58.	4.4	18
4	The XRE-DUF397 Protein Pair, Scr1 and Scr2, Acts as a Strong Positive Regulator of Antibiotic Production in Streptomyces. Frontiers in Microbiology, 2018, 9, 2791.	3.5	12
5	Uncovering production of specialized metabolites by Streptomyces argillaceus: Activation of cryptic biosynthesis gene clusters using nutritional and genetic approaches. PLoS ONE, 2018, 13, e0198145.	2.5	51
6	Designing continuous flow reaction of xylan hydrolysis for xylooligosaccharides production in packed-bed reactors using xylanase immobilized on methacrylic polymer-based supports. Bioresource Technology, 2018, 266, 249-258.	9.6	41
7	The Orphan Response Regulator Aor1 Is a New Relevant Piece in the Complex Puzzle of Streptomyces coelicolor Antibiotic Regulatory Network. Frontiers in Microbiology, 2017, 8, 2444.	3.5	26
8	Development of an antibiotic marker-free platform for heterologous protein production in Streptomyces. Microbial Cell Factories, 2017, 16, 164.	4.0	10
9	New approaches to achieve high level enzyme production in Streptomyces lividans. Microbial Cell Factories, 2016, 15, 28.	4.0	54
10	The two kinases, AbrC1 and AbrC2, of the atypical two-component system AbrC are needed to regulate antibiotic production and differentiation in Streptomyces coelicolor. Frontiers in Microbiology, 2015, 6, 450.	3.5	31
11	Toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Frontiers in Microbiology, 2015, 6, 461.	3.5	54
12	Regulation of the AbrA1/A2 Two-Component System in Streptomyces coelicolor and the Potential of Its Deletion Strain as a Heterologous Host for Antibiotic Production. PLoS ONE, 2014, 9, e109844.	2.5	26
13	Deciphering the Regulon of Streptomyces coelicolor AbrC3, a Positive Response Regulator of Antibiotic Production. Applied and Environmental Microbiology, 2014, 80, 2417-2428.	3.1	39
14	Stable expression plasmids for Streptomyces based on a toxin-antitoxin system. Microbial Cell Factories, 2013, 12, 39.	4.0	18
15	Two-component systems in Streptomyces: key regulators of antibiotic complex pathways. Microbial Cell Factories, 2013, 12, 127.	4.0	93
16	High level of antibiotic production in a double polyphosphate kinase and phosphate-binding protein mutant of <i>Streptomyces lividans </i> i>FEMS Microbiology Letters, 2013, 342, 123-129.	1.8	6
17	Production of xylo-oligosaccharides by immobilized-stabilized derivatives of endo-xylanase from Streptomyces halstedii. Process Biochemistry, 2013, 48, 478-483.	3.7	29
18	Identification of the First Functional Toxin-Antitoxin System in Streptomyces. PLoS ONE, 2012, 7, e32977.	2.5	40

#	Article	IF	CITATIONS
19	<i>Myxococcus xanthus</i> induces actinorhodin overproduction and aerial mycelium formation by <i>Streptomyces coelicolor</i> Microbial Biotechnology, 2011, 4, 175-183.	4.2	86
20	Post-translational processing of modular xylanases from Streptomyces is dependent on the carbohydrate-binding module. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1419-1426.	3.0	0
21	Novel Two-Component Systems Implied in Antibiotic Production in Streptomyces coelicolor. PLoS ONE, 2011, 6, e19980.	2.5	62
22	Improvement of protein production in Streptomyces. Journal of Biotechnology, 2010, 150, 375-375.	3.8	0
23	Robust reporter system based on chalcone synthase rppA gene from Saccharopolyspora erythraea. Journal of Microbiological Methods, 2010, 83, 111-119.	1.6	16
24	High-level overproduction of Thermus enzymes in Streptomyces lividans. Applied Microbiology and Biotechnology, 2008, 79, 1001-1008.	3.6	20
25	Expression of the pstS gene of Streptomyces lividansis regulated by the carbon source and is partially independent of the PhoP regulator. BMC Microbiology, 2008, 8, 201.	3.3	21
26	Promicromonospora kroppenstedtii sp. nov., isolated from sandy soil. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1476-1481.	1.7	20
27	Effect of carbon source on the expression of celA1, a cellulase-encoding gene from Streptomyces halstedii JM8. FEMS Microbiology Letters, 2006, 153, 97-103.	1.8	4
28	Identification of the sequences involved in the glucose-repressed transcription of the Streptomyces halstedii JM8 xysA promoter. Gene, 2005, 351, 1-9.	2.2	28
29	The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiology (United Kingdom), 2005, 151, 2583-2592.	1.8	51
30	SCP1, a 356 023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Molecular Microbiology, 2004, 51, 1615-1628.	2.5	108
31	Single mutations of residues outside the active center of the xylanase Xys1Δ fromStreptomyces halstedijJM8 affect its activity. FEMS Microbiology Letters, 2004, 240, 237-243.	1.8	15
32	Streptomyces lividans and Brevibacterium lactofermentum as heterologous hosts for the production of X22 xylanase from Aspergillus nidulans. Applied Microbiology and Biotechnology, 2004, 65, 401-406.	3.6	20
33	Improved vectors for transcriptional/translational signal screening in corynebacteria using the melC operon from Streptomyces glaucescens as reporter. Archives of Microbiology, 2003, 180, 53-59.	2.2	25
34	Structure of xylanase Xys1î" fromStreptomyces halstedii. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1447-1453.	2.5	22
35	Posttranslational processing of the xylanase Xys1L from Streptomyces halstedii JM8 is carried out by secreted serine proteases. Microbiology (United Kingdom), 2003, 149, 1623-1632.	1.8	29
36	Radamycin, a Novel Thiopeptide Produced by Streptomyces sp. RSP9. I. Taxonomy, Fermentation, Isolation and Biological Activities Journal of Antibiotics, 2002, 55, 383-390.	2.0	19

3

#	Article	IF	Citations
37	Radamycin, a Novel Thiopeptide Produced by Streptomyces sp. RSP9. II. Physico-chemical Properties and Structure Determination Journal of Antibiotics, 2002, 55, 391-395.	2.0	17
38	Morphological and physiological changes in Streptomyces lividans induced by different yeasts. Archives of Microbiology, 2002, 177, 259-266.	2.2	6
39	Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Archives of Microbiology, 2001, 177, 91-97.	2.2	50
40	Thermodynamic stability of two variants of xylanase (Xys1) from Streptomyces halstedii JM8. FEBS Journal, 1998, 253, 462-468.	0.2	24
41	Two genes encoding an endoglucanase and a cellulose-binding protein are clustered and co-regulated by a TTA codon in <i>Streptomyces halstedii</i> JM8. Biochemical Journal, 1997, 324, 403-411.	3.7	30
42	Effect of carbon source on the expression of celA1, a cellulase-encoding gene from Streptomyces halstedii JM8. FEMS Microbiology Letters, 1997, 153, 97-103.	1.8	7
43	Analysis of xysA, a gene from Streptomyces halstedii JM8 that encodes a 45-kilodalton modular xylanase, Xys1. Applied and Environmental Microbiology, 1997, 63, 2983-2988.	3.1	31
44	A cellulase gene from a new alkalophilic Bacillus sp. (strain N186-1). Its cloning, nucleotide sequence and expression in Escherichia coli. Applied Microbiology and Biotechnology, 1996, 46, 149-155.	3 . 6	30
45	Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8. Applied and Environmental Microbiology, 1995, 61, 2414-2419.	3.1	65
46	Differential scanning calorimetric study of the thermal stability of xylanase from Streptomyces halstedii JM8. Biochemistry, 1994, 33, 13787-13791.	2.5	18
47	Cloning and DNA sequencing of bgaA, a gene encoding an endo-beta-1,3-1,4-glucanase, from an alkalophilic Bacillus strain (N137). Applied and Environmental Microbiology, 1994, 60, 1213-1220.	3.1	27
48	Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Applied and Environmental Microbiology, 1993, 59, 2607-2613.	3.1	210
49	Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor. Cell, 1991, 65, 641-650.	28.9	183
50	Visualizing Gene Expression in Time and Space in the Filamentous Bacterium <i>Streptomyces coelicolor</i> . Science, 1988, 240, 768-772.	12.6	95
51	Promoter determining the timing and spatial localization of transcription of a cloned Streptomyces coelicolor gene encoding a spore-associated polypeptide. Journal of Bacteriology, 1988, 170, 1895-1901.	2,2	7 5
52	Identification of a promoter sequence in the plasmid pUL340 of Brevibacterium lactofermentum and construction of new cloning vectors for corynebacteria containing two selectable markers. Gene, 1987, 56, 199-208.	2.2	33
53	Cloning Systems in Amino Acid–Producing Corynebacteria. Nature Biotechnology, 1987, 5, 137-146.	17.5	48
54	High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA. Journal of Bacteriology, 1985, 162, 463-467.	2.2	89