
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3439877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shaping an optical dome: The size and shape of the insect compound eye. Seminars in Cell and Developmental Biology, 2022, 130, 37-44.	2.3	4
2	Parallel evolution of a splicing program controlling neuronal excitability in flies and mammals. Science Advances, 2022, 8, eabk0445.	4.7	15
3	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	6.0	295
4	The evolution and development of eye size in flies. Wiley Interdisciplinary Reviews: Developmental Biology, 2021, 10, e380.	5.9	14
5	Variation in Pleiotropic Hub Gene Expression Is Associated with Interspecific Differences in Head Shape and Eye Size in <i>Drosophila</i> . Molecular Biology and Evolution, 2021, 38, 1924-1942.	3.5	14
6	Quantitative Relationships Between Growth, Differentiation, and Shape That Control Drosophila Eye Development and Its Variation. Frontiers in Cell and Developmental Biology, 2021, 9, 681933.	1.8	4
7	Regulation of metamorphosis in neopteran insects is conserved in the paleopteran <i>Cloeon dipterum</i> (Ephemeroptera). Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
8	Disorder in cellular packing can alter proliferation dynamics to regulate growth. Physical Review E, 2021, 104, L052401.	0.8	2
9	Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings. Nature Communications, 2020, 11, 2631.	5.8	57
10	Control of size, fate and time by the Hh morphogen in the eyes of flies. Current Topics in Developmental Biology, 2020, 137, 307-332.	1.0	6
11	Space colonization by branching trachea explains the morphospace of a simple respiratory organ. Developmental Biology, 2020, 462, 50-59.	0.9	1
12	José Luis Gómez-Skarmeta (1966-2020). Development (Cambridge), 2020, 147, .	1.2	1
13	A Toggle-Switch and a Feed-Forward Loop Engage in the Control of the Drosophila Retinal Determination Gene Network. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	1
14	Establishment of the mayfly Cloeon dipterum as a new model system to investigate insect evolution. EvoDevo, 2019, 10, 6.	1.3	22
15	Dynamic Hh signaling can generate temporal information during tissue patterning. Development (Cambridge), 2019, 146, .	1.2	7
16	Patterning, Dynamics and Evolution in the Ocellar Complex of the Fruit Fly. Understanding Complex Systems, 2018, , 39-62.	0.3	0
17	Wnt controls the medial–lateral subdivision of the <i>Drosophila</i> head. Biology Letters, 2018, 14, 20180258.	1.0	7
18	Growth control in the <i>Drosophila</i> eye disc by the cytokine Unpaired. Development (Cambridge), 2017, 144, 837-843.	1.2	17

#	Article	IF	CITATIONS
19	TGFβ/Activin signalling is required for ribosome biogenesis and cell growth in <i>Drosophila</i> salivary glands. Open Biology, 2017, 7, 160258.	1.5	15
20	Growth and size control during development. Open Biology, 2017, 7, 170190.	1.5	59
21	Nuclear receptors connect progenitor transcription factors to cell cycle control. Scientific Reports, 2017, 7, 4845.	1.6	17
22	Specific expression and function of the Six3 <i>optix</i> in <i>Drosophila</i> serially homologous organs. Biology Open, 2017, 6, 1155-1164.	0.6	4
23	dachshund Potentiates Hedgehog Signaling during Drosophila Retinogenesis. PLoS Genetics, 2016, 12, e1006204.	1.5	15
24	Toward a study of gene regulatory constraints to morphological evolution of the Drosophila ocellar region. Development Genes and Evolution, 2016, 226, 221-233.	0.4	5
25	Increased avidity for Dpp/BMP2 maintains the proliferation of progenitors-like cells in the Drosophila eye. Developmental Biology, 2016, 418, 98-107.	0.9	13
26	Fast and Furious 800. The Retinal Determination Gene Network in Drosophila. , 2016, , 95-124.		13
27	A quantitative analysis of growth control in the <i>Drosophila</i> eye disc. Development (Cambridge), 2016, 143, 1482-90.	1.2	30
28	A Model of the Spatio-temporal Dynamics of Drosophila Eye Disc Development. PLoS Computational Biology, 2016, 12, e1005052.	1.5	32
29	Antero-posterior patterning of <i>Drosophila</i> ocelli requires an anti-repressor mechanism within the <i>hh-</i> pathway mediated by the Six3 gene <i>Optix</i> . Development (Cambridge), 2015, 142, 2801-9.	1.2	12
30	Eye Selector Logic for a Coordinated Cell Cycle Exit. PLoS Genetics, 2015, 11, e1004981.	1.5	20
31	The retinal determination gene <i>dachshund</i> restricts cell proliferation by limiting the activity of the Homothorax-Yorkie complex. Development (Cambridge), 2015, 142, 1470-9.	1.2	16
32	Meis1 coordinates a network of genes implicated in eye development and microphthalmia. Development (Cambridge), 2015, 142, 3009-20.	1.2	32
33	E-cadherin-defective gastric cancer cells depend on Laminin to survive and invade. Human Molecular Genetics, 2015, 24, 5891-5900.	1.4	28
34	Restless Legs Syndrome-associated intronic common variant in <i>Meis1</i> alters enhancer function in the developing telencephalon. Genome Research, 2014, 24, 592-603.	2.4	102
35	A conserved transcriptional network regulates lamina development in the <i>Drosophila</i> visual system. Development (Cambridge), 2014, 141, 2838-2847.	1.2	19
36	Deep conservation of <i>cis</i> -regulatory elements in metazoans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130020.	1.8	26

#	Article	IF	CITATIONS
37	The nucleolar protein Viriato/Nol12 is required for the growth and differentiation progression activities of the Dpp pathway during Drosophila eye development. Developmental Biology, 2013, 377, 154-165.	0.9	18
38	A Hh-driven gene network controls specification, pattern and size of the <i>Drosophila</i> simple eyes. Development (Cambridge), 2013, 140, 82-92.	1.2	33
39	Comparative motif discovery combined with comparative transcriptomics yields accurate targetome and enhancer predictions. Genome Research, 2013, 23, 74-88.	2.4	54
40	Several Cis-regulatory Elements Control mRNA Stability, Translation Efficiency, and Expression Pattern of Prrxl1 (Paired Related Homeobox Protein-like 1). Journal of Biological Chemistry, 2013, 288, 36285-36301.	1.6	17
41	Hoxd13 Contribution to the Evolution of Vertebrate Appendages. Developmental Cell, 2012, 23, 1219-1229.	3.1	83
42	<i>CPEB1</i> , a novel gene silenced in gastric cancer: a <i>Drosophila</i> approach. Gut, 2012, 61, 1115-1123.	6.1	41
43	Identification and Analysis of Conserved cis-Regulatory Regions of the MEIS1 Gene. PLoS ONE, 2012, 7, e33617.	1.1	20
44	Dissecting the Transcriptional Regulatory Properties of Human Chromosome 16 Highly Conserved Non-Coding Regions. PLoS ONE, 2011, 6, e24824.	1.1	13
45	Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes. Nature Structural and Molecular Biology, 2011, 18, 708-714.	3.6	95
46	Transphyletic conservation of developmental regulatory state in animal evolution. Proceedings of the United States of America, 2011, 108, 14186-14191.	3.3	94
47	Regulation of ocellar specification and size by <i>twin of eyeless</i> and <i>homothorax</i> . Developmental Dynamics, 2011, 240, 75-85.	0.8	26
48	The <i>Drosophila Nol12</i> homologue <i>viriato</i> is a dMyc target that regulates nucleolar architecture and is required for dMyc-stimulated cell growth. Development (Cambridge), 2011, 138, 349-357.	1.2	25
49	Phylogeny of the teashirtâ€related zinc finger (tshz) gene family and analysis of the developmental expression of <i>tshz2</i> and <i>tshz3b</i> in the zebrafish. Developmental Dynamics, 2010, 239, 1010-1018.	0.8	16
50	Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to <i>HHEX</i> , <i>SOX4</i> , and <i>IRX3</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 775-780.	3.3	189
51	Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the Zona Limitans Intrathalamica (ZLI) brain organizer. EvoDevo, 2010, 1, 7.	1.3	55
52	hth maintains the pool of eye progenitors and its downregulation by Dpp and Hh couples retinal fate acquisition with cell cycle exit. Developmental Biology, 2010, 339, 78-88.	0.9	68
53	Size matters: The contribution of cell proliferation to the progression of the specification Drosophila eye gene regulatory network. Developmental Biology, 2010, 344, 569-577.	0.9	30
54	Using fruitflies to help understand the molecular mechanisms of human hereditary diffuse gastric cancer. International Journal of Developmental Biology, 2009, 53, 1557-1561.	0.3	9

#	Article	lF	CITATIONS
55	Iberia: from fable to the bench. International Journal of Developmental Biology, 2009, 53, 1269-1271.	0.3	2
56	<i>SoxF</i> is part of a novel negative-feedback loop in the <i>wingless</i> pathway that controls proliferation in the <i>Drosophila</i> wing disc. Development (Cambridge), 2009, 136, 761-769.	1.2	24
57	The colorectal cancer risk at 18q21 is caused by a novel variant altering <i>SMAD7</i> expression. Genome Research, 2009, 19, 987-993.	2.4	85
58	Zincâ€finger paralogues <i>tsh</i> and <i>tio</i> are functionally equivalent during imaginal development in <i>Drosophila</i> and maintain their expression levels through auto―and crossâ€negative feedback loops. Developmental Dynamics, 2009, 238, 19-28.	0.8	45
59	Zebrafish enhancer detection (ZED) vector: A new tool to facilitate transgenesis and the functional analysis of <i>cis</i> â€regulatory regions in zebrafish. Developmental Dynamics, 2009, 238, 2409-2417.	0.8	153
60	22-P008 Comparison of Sowah and Iroquois expression patterns in metazoans: Together but not scrambled. Mechanisms of Development, 2009, 126, S331.	1.7	0
61	An antennal-specific role for bowl in repressing supernumerary appendage development in Drosophila. Mechanisms of Development, 2008, 125, 809-821.	1.7	6
62	<i>meis1</i> regulates <i>cyclin D1</i> and <i>c-myc</i> expression, and controls the proliferation of the multipotent cells in the early developing zebrafish eye. Development (Cambridge), 2008, 135, 799-803.	1.2	83
63	Odd-skipped genes encode repressors that control kidney development. Developmental Biology, 2007, 301, 518-531.	0.9	124
64	E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia. Human Molecular Genetics, 2006, 15, 1704-1712.	1.4	35
65	Of Fat flies and Hippos, or the magic of animal size. Nature Structural and Molecular Biology, 2006, 13, 1051-1053.	3.6	1
66	A 3′cis-regulatory region controlswingless expression in theDrosophila eye and leg primordia. Developmental Dynamics, 2006, 235, 225-234.	0.8	27
67	Odd-skipped genes specify the signaling center that triggers retinogenesis in Drosophila. Development (Cambridge), 2006, 133, 4145-4149.	1.2	40
68	Organ specification-growth control connection: New in-sightsfrom the Drosophila eye-antennal disc. Developmental Dynamics, 2005, 232, 673-684.	0.8	101
69	Restricted teashirt expression confers eye-specific responsiveness to Dpp and Wg signals during eye specification in Drosophila. Development (Cambridge), 2005, 132, 5011-5020.	1.2	52
70	Dynamics and function of intron sequences of the wingless gene during the evolution of the Drosophila genus. Evolution & Development, 2004, 6, 325-335.	1.1	7
71	Development of the genitalia in Drosophila melanogaster. Differentiation, 2003, 71, 299-310.	1.0	53
72	Genomic characterization of a repetitive motif strongly associated with developmental genes in Drosophila. BMC Genomics, 2003, 4, 52.	1.2	4

#	Article	IF	CITATIONS
73	E-cadherin germline missense mutations and cell phenotype: evidence for the independence of cell invasion on the motile capabilities of the cells. Human Molecular Genetics, 2003, 12, 3007-3016.	1.4	79
74	Turnover of binding sites for transcription factors involved in early Drosophila development. Gene, 2003, 310, 215-220.	1.0	55
75	Combinatorial control of Drosophila eye development by Eyeless, Homothorax, and Teashirt. Genes and Development, 2002, 16, 2415-2427.	2.7	227
76	Signalling legacies. Nature, 2002, 418, 737-738.	13.7	5
77	Genetic and molecular characterization of a novel <i>iab-8</i> regulatory domain in the <i>Abdominal-B</i> gene of <i>Drosophila melanogaster</i> . Development (Cambridge), 2002, 129, 5195-5204.	1.2	18
78	Genetic and molecular characterization of a novel iab-8 regulatory domain in the Abdominal-B gene of Drosophila melanogaster. Development (Cambridge), 2002, 129, 5195-204.	1.2	8
79	The Ground State of the Ventral Appendage in Drosophila. Science, 2001, 293, 1477-1480.	6.0	84
80	homothorax and iroquois-C genes are required for the establishment of territories within the developing eye disc. Mechanisms of Development, 2000, 96, 15-25.	1.7	105
81	The Art of Genes: How Organisms Make Themselves. Enrico Coen. Quarterly Review of Biology, 2000, 75, 320-321.	0.0	0
82	Master Control Genes in Development and Evolution: The Homeobox Story. Walter J. Gehring. Quarterly Review of Biology, 1999, 74, 469-470.	0.0	0
83	Control of antennal versus leg development in Drosophila. Nature, 1998, 392, 723-726.	13.7	280
84	Nuclear Translocation of Extradenticle Requires homothorax, which Encodes an Extradenticle-Related Homeodomain Protein. Cell, 1997, 91, 171-183.	13.5	429
85	The genital disc of Drosophila melanogaster Development Genes and Evolution, 1997, 207, 216-228.	0.4	50
86	The genital disc of Drosophila melanogaster. Development Genes and Evolution, 1997, 207, 229-241.	0.4	43
87	Interactions of Drosophila <i>Ultrabithorax</i> Regulatory Regions With Native and Foreign Promoters. Genetics, 1997, 145, 123-137.	1.2	48
88	Changes in the Blood-Thymus Barrier of Adult Rats after Estradiol-Treatment. Immunobiology, 1995, 192, 231-248.	0.8	17