Benito Alcaide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3439684/publications.pdf

Version: 2024-02-01

305 papers 9,841 citations

³⁸⁷⁴² 50 h-index

80 g-index

407 all docs

407 docs citations

407 times ranked

4996 citing authors

#	Article	IF	CITATIONS
1	β-Lactams:  Versatile Building Blocks for the Stereoselective Synthesis of Non-β-Lactam Products. Chemical Reviews, 2007, 107, 4437-4492.	47.7	474
2	Exploiting [2+2] cycloaddition chemistry: achievements with allenes. Chemical Society Reviews, 2010, 39, 783-816.	38.1	349
3	Grubbs' Ruthenium-Carbenes Beyond the Metathesis Reaction: Less Conventional Non-Metathetic Utility. Chemical Reviews, 2009, 109, 3817-3858.	47.7	303
4	The Direct Catalytic Asymmetric Aldol Reaction. European Journal of Organic Chemistry, 2002, 2002, 1595-1601.	2.4	225
5	& Samp; #946; Lactams as Versatile Synthetic Intermediates for the Preparation of Heterocycles of Biological Interest. Current Medicinal Chemistry, 2004, 11, 1921-1949.	2.4	191
6	Gold-Catalyzed Cyclization Reactions of Allenol and Alkynol Derivatives. Accounts of Chemical Research, 2014, 47, 939-952.	15.6	185
7	4-Oxoazetidine-2-carbaldehydes as useful building blocks in stereocontrolled synthesis. Chemical Society Reviews, 2001, 30, 226-240.	38.1	154
8	Selective Bond Cleavage of the \hat{l}^2 -Lactam Nucleus: Application in Stereocontrolled Synthesis. Synlett, 2002, 2002, 0381-0393.	1.8	139
9	The Direct Catalytic Asymmetric Cross-Aldol Reaction of Aldehydes. Angewandte Chemie - International Edition, 2003, 42, 858-860.	13.8	125
10	Efficient Entry to Diversely Functionalized Spirocyclic Oxindoles from Isatins through Carbonyl-Addition/Cyclization Reaction Sequences. Journal of Organic Chemistry, 2006, 71, 2346-2351.	3.2	117
11	Metalâ€Catalyzed Regiodivergent Cyclization of γâ€Allenols: Tetrahydrofurans versus Oxepanes. Angewandte Chemie - International Edition, 2007, 46, 6684-6687.	13.8	114
12	Gold catalyzed oxycyclizations of alkynols and alkyndiols. Organic and Biomolecular Chemistry, 2011, 9, 4405.	2.8	112
13	Cyclization reactions of bis(allenes) for the synthesis of polycarbo(hetero)cycles. Chemical Society Reviews, 2014, 43, 3106-3135.	38.1	111
14	A Novel Use of Grubbs' Carbene. Application to the Catalytic Deprotection of Tertiary Allylamines. Organic Letters, 2001, 3, 3781-3784.	4.6	109
15	Non-Metathetic Behavior Patterns of Grubbs' Carbene. Chemistry - A European Journal, 2003, 9, 1258-1262.	3.3	108
16	Additions of Allenyl/Propargyl Organometallic Reagents to 4-Oxoazetidine-2-carbaldehydes: Novel Palladium-Catalyzed Domino Reactions in Allenynes. Chemistry - A European Journal, 2002, 8, 1719-1729.	3.3	97
17	Reaction of Two Different α-Allenols in a Heterocyclization/Cross-Coupling Sequence: Convenient Access to Functionalized Buta-1,3-dienyl Dihydrofurans. Angewandte Chemie - International Edition, 2006, 45, 4501-4504.	13.8	96
18	The Allenic Pausonâ^'Khand Reaction in Synthesis. European Journal of Organic Chemistry, 2004, 2004, 3377-3383.	2.4	89

#	Article	IF	Citations
19	Stereoselective preparation of mono- and bisbetalactams by the 1,4-diaza-1,3-diene - acid chloride condensation: scope and synthetic applications. Journal of Organic Chemistry, 1992, 57, 5921-5931.	3.2	88
20	Progress in allene chemistry. Chemical Society Reviews, 2014, 43, 2886.	38.1	85
21	Proline-Catalyzed Diastereoselective Direct Aldol Reaction between 4-Oxoazetidine-2-carbaldehydes and Ketones. Journal of Organic Chemistry, 2006, 71, 4818-4822.	3.2	82
22	Organocatalytic Reactions with Acetaldehyde. Angewandte Chemie - International Edition, 2008, 47, 4632-4634.	13.8	80
23	Ruthenium-Catalyzed Chemoselective N-Allyl Cleavage: Novel Grubbs Carbene Mediated Deprotection of Allylic Amines. Chemistry - A European Journal, 2003, 9, 5793-5799.	3.3	79
24	Pd-Cu Bimetallic Catalyzed Domino Cyclization of \hat{l}_{\pm} -Allenols Followed by a Coupling Reaction: New Sequence Leading to Functionalized Spirolactams. Chemistry - A European Journal, 2005, 11, 5708-5712.	3.3	79
25	Novel Cyclization Reactions of Aminoallenes. Advanced Synthesis and Catalysis, 2011, 353, 2561-2576.	4.3	79
26	Fascinating reactivity in gold catalysis: synthesis of oxetenes through rare 4-exo-dig allene cyclization and infrequent \hat{l}^2 -hydride elimination. Chemical Communications, 2011, 47, 9054.	4.1	76
27	Metal-Promoted Allylation, Propargylation, or Allenylation of Azetidine-2,3-diones in Aqueous and Anhydrous Media. Application to the Asymmetric Synthesis of Densely Functionalized 3-Substituted 3-Hydroxy- \hat{l}^2 -lactams. Journal of Organic Chemistry, 2001, 66, 5208-5216.	3.2	74
28	Organocatalytic Ring Expansion of \hat{l}^2 -Lactams to \hat{l}^3 -Lactams through a Novel N1 \hat{a}^2 C4 Bond Cleavage. Direct Synthesis of Enantiopure Succinimide Derivatives. Organic Letters, 2005, 7, 3981-3984.	4.6	73
29	Domino Meyer–Schuster/Arylation Reaction of Alkynols or Alkynyl Hydroperoxides with Diazonium Salts Promoted by Visible Light under Dual Gold and Ruthenium Catalysis. Advanced Synthesis and Catalysis, 2016, 358, 1526-1533.	4.3	71
30	Straightforward Asymmetric Entry to Highly Functionalized Medium-Sized Rings Fused to β-Lactams via Chemo- and Stereocontrolled Divergent Radical Cyclization of Baylisâ°'Hillman Adducts Derived from 4-Oxoazetidine-2-carbaldehydesâ€. Journal of Organic Chemistry, 2001, 66, 1612-1620.	3.2	69
31	Metal-Mediated Entry to Functionalized 3-Substituted 3-Hydroxyindolin-2-ones via Regiocontrolled Carbonylallylation, Bromoallylation, 1,3-Butadien-2-ylation, Propargylation, or Allenylation Reactions of Isatins in Aqueous Media. Journal of Organic Chemistry, 2005, 70, 3198-3204.	3.2	69
32	Gold-Catalyzed Cyclizations of Alkynol-Based Compounds: Synthesis of Natural Products and Derivatives. Molecules, 2011, 16, 7815-7843.	3.8	67
33	Synthesis of Strained Tricyclic \hat{l}^2 -Lactams by Intramolecular [2+2] Cycloaddition Reactions of 2-Azetidinone-Tethered Enallenols: Control of Regioselectivity by Selective Alkene Substitution. Chemistry - A European Journal, 2006, 12, 1539-1546.	3.3	63
34	A Practical Ruthenium-Catalyzed Cleavage of the Allyl Protecting Group in Amides, Lactams, Imides, and Congeners. Chemistry - A European Journal, 2006, 12, 2874-2879.	3.3	63
35	Crossâ€Coupling/Cyclization Reactions of Two Different Allenic Moieties. Chemistry - A European Journal, 2010, 16, 5836-5842.	3.3	63
36	Diversity-Oriented Preparation of Enantiopure Spirocyclic 2-Azetidinones from $\hat{l}\pm$ -Oxo- \hat{l}^2 -lactams through Barbier-Type Reactions followed by Metal-Catalyzed Cyclizations. Advanced Synthesis and Catalysis, 2007, 349, 749-758.	4.3	61

#	Article	IF	CITATIONS
37	Regioselectivity Control in the Metalâ€Catalyzed OC Functionalization of γâ€Allenols, Partâ€1: Experimental Study. Chemistry - A European Journal, 2009, 15, 1901-1908.	3.3	61
38	Efficient Entry to Highly Functionalized \hat{l}^2 -Lactams by Regio- and Stereoselective 1,3-Dipolar Cycloaddition Reaction of 2-Azetidinone-Tethered Nitrones. Synthetic Applications. Journal of Organic Chemistry, 2002, 67, 7004-7013.	3.2	60
39	New Regiocontrolled Synthesis of Functionalized Pyrroles from 2â€Azetidinoneâ€Tethered Allenols. Chemistry - A European Journal, 2008, 14, 637-643.	3.3	59
40	Gold―or Palladiumâ€Catalyzed Allene Carbocyclization/Functionalization: Simple and Efficient Synthesis of Carbazoles. Advanced Synthesis and Catalysis, 2011, 353, 1871-1876.	4.3	59
41	Recent Advances in the Stereocontrolled Synthesis of Bi- and Tricyclic-β-Lactams with Non-Classical Structure. Current Organic Chemistry, 2002, 6, 245-264.	1.6	57
42	Structurally Novel Bi- and Tricyclic \hat{l}^2 -Lactams via $[2+2]$ Cycloaddition or Radical Reactions in 2-Azetidinone-Tethered Enallenes and Allenynes. Organic Letters, 2003, 5, 3795-3798.	4.6	57
43	Synthesis of Optically Pure Highly Functionalized Î ³ -Lactams via 2-Azetidinone-Tethered Iminophosphoranes. Journal of Organic Chemistry, 2004, 69, 993-996.	3.2	57
44	Unveiling the Reactivity of Propargylic Hydroperoxides under Gold Catalysis. Journal of the American Chemical Society, 2013, 135, 898-905.	13.7	56
45	Photopromoted Entry to Benzothiophenes, Benzoselenophenes, 3 <i>H</i> â€Indoles, Isocoumarins, Benzosultams, and (Thio)flavones by Goldâ€Catalyzed Arylative Heterocyclization of Alkynes. Advanced Synthesis and Catalysis, 2017, 359, 2640-2652.	4.3	56
46	Alkyneâ^'Co2(CO)6Complexes in the Synthesis of Fused Tricyclic β-Lactam and Azetidine Systemsâ€,1. Journal of Organic Chemistry, 1998, 63, 6786-6796.	3.2	55
47	Allenylâ€Î²â€lactams: versatile scaffolds for the synthesis of heterocycles. Chemical Record, 2011, 11, 311-330.	5.8	55
48	Regio- and Stereocontrolled Metal-Mediated Carbonyl Propargylation or Allenylation of Enantiomerically Pure Azetidine-2,3-diones:  Synthesis of Highly Functionalized 3-Substituted 3-Hydroxy-β-lactams. Organic Letters, 2000, 2, 1411-1414.	4.6	53
49	Chemodivergence in Alkene/Allene Cycloetherification of Enallenols: Iron versus Noble Metal Catalysis. Chemistry - A European Journal, 2008, 14, 7756-7759.	3.3	53
50	Synthesis of Spiroheterocycles by Palladiumâ€Catalyzed Domino Cycloisomerization/Crossâ€Coupling of αâ€Allenols and Baylis–Hillman Acetates. Chemistry - A European Journal, 2009, 15, 3344-3346.	3.3	53
51	Metalâ€Catalyzed Cycloetherification Reactions of β,γ―and γ,δâ€Allendiols: Chemo― Regio― and Stereocor the Synthesis of Oxacycles. Chemistry - A European Journal, 2010, 16, 13243-13252.	ntrol in	53
52	Novel Diethylaluminum Chloride Promoted Reactions of the Azetidine Ring:Â Efficient and Stereocontrolled Entry to Functionalized Olefins, Pyrrolidines, and Pyrroles. Journal of Organic Chemistry, 1999, 64, 9596-9604.	3.2	52
53	Base-Promoted Isomerization ofcis-4-Formyl-2-azetidinones:Â ChemoselectiveC4-Epimerization vs Rearrangement to Cyclic Enaminones. Journal of Organic Chemistry, 2000, 65, 3453-3459.	3.2	52
54	Allene Substitution-Controlled Switching of Dimerization to Cycloisomerization in the PdII-Catalyzed Reaction of Terminal α-Allenones. European Journal of Organic Chemistry, 2007, 2007, 2844-2849.	2.4	52

#	Article	IF	CITATIONS
55	Useful Dual Diels–Alder Behavior of 2-Azetidinone-Tethered Aryl Imines as Azadienophiles or Azadienes: A -Lactam-Based Stereocontrolled Access to Optically Pure Highly Functionalized Indolizidine Systems. Chemistry - A European Journal, 2003, 9, 3415-3426.	3.3	51
56	Stereoselective Allylation of 4-Oxoazetidine-2-carbaldehydes. Application to the Stereocontrolled Synthesis of Fused Tricyclic β-Lactams via Intramolecular Dielsã° Alder Reaction of 2-Azetidinone-Tethered Trienesã€. Journal of Organic Chemistry, 2000, 65, 3310-3321.	3.2	50
57	Rapid and Stereocontrolled Synthesis of Racemic and Optically Pure Highly Functionalized Pyrrolizidine Systems via Rearrangement of 1,3-Dipolar Cycloadducts Derived from 2-Azetidinone-Tethered Azomethine Ylides. Journal of Organic Chemistry, 2001, 66, 1351-1358.	3.2	47
58	Direct organocatalytic synthesis of enantiopure succinimides from \hat{l}^2 -lactam aldehydes through ring expansion promoted by azolium salt precatalysts. Chemical Communications, 2007, , 4788.	4.1	47
59	Metalâ€Catalyzed Cyclization of β―and γâ€Allenols Derived from <scp>D</scp> â€Glyceraldehyde—Synthesis Enantiopure Dihydropyrans and Tetrahydrooxepines: An Experimental and Theoretical Study. Chemistry - A European Journal, 2009, 15, 9127-9138.	of 3.3	47
60	Indiumâ€Promoted Allylation Reaction of Iminoâ€Isatins in Aqueous Media: Synthesis of Quaternary 3â€Aminooxindoles. European Journal of Organic Chemistry, 2010, 2010, 2845-2848.	2.4	47
61	Straightforward Synthesis of Bridged Azaoxa Skeletons: Gold atalyzed Aminoketalization of Garner's Aldehydeâ€Derived Alkynes. Chemistry - A European Journal, 2011, 17, 4968-4971.	3.3	47
62	Novel ruthenium-catalyzed cleavage of allyl protecting group in lactams. Tetrahedron Letters, 2003, 44, 8693-8695.	1.4	46
63	Divergent Reactivity of 2â€Azetidinoneâ€Tethered Allenols with Electrophilic Reagents: Controlled Ring Expansion <i>versus</i> Spirocyclization. Advanced Synthesis and Catalysis, 2010, 352, 621-626.	4.3	45
64	Gold-catalysed tuning of reactivity in allenes: 9-endo hydroarylation versus formal 5-exo hydroalkylation. Chemical Communications, 2013, 49, 1282.	4.1	45
65	Gold/Acidâ€Cocatalyzed Regiodivergent Preparation of Bridged Ketals <i>via</i> Direct Bisâ€Oxycyclization of Alkynic Acetonides. Advanced Synthesis and Catalysis, 2010, 352, 1277-1283.	4.3	44
66	Metal-Mediated Carbonyl-1,3-butadien-2-ylation by 1,4-Bis(methanesulfonyl)-2-butyne or 1,4-Dibromo-2-butyne in Aqueous Media: Asymmetric Synthesis of 3-Substituted 3-Hydroxy-β-lactams. Journal of Organic Chemistry, 2002, 67, 1925-1928.	3.2	43
67	Stereoselective Synthesis of 1,2,3-Trisubstituted 1,3-Dienes through Novel [3,3]-Sigmatropic Rearrangements in ?-Allenic Methanesulfonates: Application to the Preparation of Fused Tricyclic Systems by Tandem Rearrangement/Diels?Alder Reaction. European Journal of Organic Chemistry, 2005, 2005, 98-106.	2.4	43
68	RECENT PROGRESS IN THE SYNTHESIS AND REACTIVITY OF AZETIDINE-2,3-DIONES. A REVIEW. Organic Preparations and Procedures International, 2001, 33, 315-334.	1.3	42
69	Carbonyl Allenylation/Free Radical Cyclization Sequence as a New Regio- and Stereocontrolled Access to Bi- and Tricyclic β-Lactams. Journal of Organic Chemistry, 2007, 72, 1604-1608.	3.2	42
70	Diastereoselective Synthesis of βâ€Lactam–Oxindole Hybrids Through a Threeâ€Component Reaction of Azetidineâ€2,3â€diones, αâ€Diazoâ€oxindoles, and Alcohols Catalyzed by [Rh ₂ (OAc) ₄ European Journal of Organic Chemistry, 2012, 2012, 2359-2366.]2.4	42
71	Stereoselective Synthesis of Fused Bicyclic β-Lactams through Radical Cyclization of Enyne-2-azetidinones1. Journal of Organic Chemistry, 1999, 64, 5377-5387.	3.2	41
72	Regioselectivity Control in the Metalâ€Catalyzed Functionalization of γâ€Allenols, Partâ€2: Theoretical Study. Chemistry - A European Journal, 2009, 15, 1909-1928.	3.3	41

#	Article	IF	Citations
73	Accessing Skeletal Diversity under Iron Catalysis using Substrate Control: Formation of Pyrroles <i>versus</i> Lactones. Advanced Synthesis and Catalysis, 2011, 353, 585-594.	4.3	41
74	C4,C4â€~-Bis-β-lactam to Fused Bis-γ-lactam Rearrangement. Journal of Organic Chemistry, 1996, 61, 9156-9163.	. 3.2	40
75	Novel Carbonyl Bromoallylation/Heck Reaction Sequence. Stereocontrolled Access to Bicyclic \hat{l}^2 -Lactams. Journal of Organic Chemistry, 2005, 70, 2713-2719.	3.2	40
76	Ring Expansion <i>versus</i> Cyclization in 4â€Oxoazetidineâ€2―carbaldehydes Catalyzed by Molecular lodine: Experimental and Theoretical Study in Concert. Advanced Synthesis and Catalysis, 2010, 352, 1688-1700.	4.3	39
77	Carbocyclization versus Oxycyclization on the Metal-Catalyzed Reactions of Oxyallenyl C3-Linked Indoles. Journal of Organic Chemistry, 2013, 78, 6688-6701.	3.2	39
78	Photoinduced Gold-Catalyzed Domino C(sp) Arylation/Oxyarylation of TMS-Terminated Alkynols with Arenediazonium Salts. Journal of Organic Chemistry, 2017, 82, 2177-2186.	3.2	39
79	Diastereoselective Baylis–Hillman reaction of 4-oxoazetidine-2-carbaldehydes: rapid, stereocontrolled and divergent radical synthesis of highly functionalised β-lactams fused to medium rings. Chemical Communications, 1999, , 1913-1914.	4.1	38
80	Asymmetric Synthesis of Unusual Fused Tricyclic \hat{l}^2 -Lactam Structures via Aza-Cycloadditions/Ring Closing Metathesis. Journal of Organic Chemistry, 2003, 68, 1426-1432.	3.2	38
81	Metal-assisted synthesis of enantiopure spirocyclic \hat{l}^2 -lactams from azetidine-2,3-diones. Tetrahedron Letters, 2004, 45, 6429-6431.	1.4	38
82	Chemo―and Regioselective Palladium atalyzed Oxycyclization Reactions of Allendiols: Preparation of Five―, Six―, and Eightâ€Membered Cycles. Chemistry - A European Journal, 2009, 15, 2496-2499.	3.3	37
83	New intramolecular cyclization and rearrangement processes based on the radical aryl-aryl coupling of arylsubstituted 2-azetidinones. Tetrahedron Letters, 1998, 39, 6589-6592.	1.4	36
84	Goldâ€Photoredoxâ€Cocatalyzed Tandem Oxycyclization/Coupling Sequence of Allenols and Diazonium Salts with Visible Light Mediation. Advanced Synthesis and Catalysis, 2017, 359, 2789-2800.	4.3	36
85	Straightforward Asymmetric Entry to Highly Functionalized 3-Substituted 3-Hydroxy-β-lactams via BaylisⰒHillman or Bromoallylation Reactions. Journal of Organic Chemistry, 2004, 69, 826-831.	3.2	35
86	Domino metal-free allene- \hat{l}^2 -lactam-based access to functionalized pyrroles. Chemical Communications, 2006, , 2616-2618.	4.1	35
87	Generating Complexity from Simplicity: Pdâ€Catalyzed or Cuâ€Promoted Domino Alkyne Homocoupling/Double [2+2] Allenyne Cycloaddition. Chemistry - A European Journal, 2009, 15, 9987-9989.	3.3	35
88	Unveiling the uncatalyzed reaction of alkynes with 1,2-dipoles for the room temperature synthesis of cyclobutenes. Chemical Communications, 2015, 51, 3395-3398.	4.1	35
89	A convenient trans-stereoselective synthesis of phenanthridine derived 2-azetidinones using the Staudinger ketene-imine cycloaddition. Tetrahedron Letters, 1999, 40, 2005-2006.	1.4	34
90	A Novel One-Step Approach for the Preparation of \hat{l}_{\pm} -Amino Acids, \hat{l}_{\pm} -Amino Amides, and Dipeptides from Azetidine-2,3-diones. Chemistry - A European Journal, 2002, 8, 3646.	3.3	33

#	Article	IF	CITATIONS
91	Diastereoselective Route to Novel Fused or Bridged Tricyclic Î ² -Lactams through Intramolecular Nitrone-Alkene Cycloaddition of 2-Azetidinone-Tethered Alkenylaldehydes - Synthetic Applications to Carbacephams and Cyclic Î ² -Amino Acid Derivatives. European Journal of Organic Chemistry, 2005, 2005, 1680-1693.	2.4	33
92	A novel, general, totally stereoselective one-pot synthesis of cis-3-substituted 4-formylazetidin-2-ones. Tetrahedron Letters, 1991, 32, 803-806.	1.4	32
93	Preparation of .alphaMethylene and .alphaEthylidene .betaLactams via the Ester Enolate-Imine Condensation Using .beta(Dialkylamino) Esters as Starting Materials: Scope and Synthetic Applications. Journal of Organic Chemistry, 1994, 59, 7994-8002.	3.2	32
94	Stereoselective Synthesis of 3-Substituted 4-(Formyloxy)-2-azetidinones by the Unusual Baeyerâ 'Villiger Reaction of \hat{l}^2 -Lactam Aldehydes. Scope and Synthetic Applications. Journal of Organic Chemistry, 1996, 61, 8819-8825.	3.2	32
95	Organocatalyzed Three-Component Ugi and Passerini Reactions of 4-Oxoazetidine-2-carbaldehydes and Azetidine-2,3-diones. Application to the Synthesis of \hat{I}^3 -Lactams and \hat{I}^3 -Lactones. Journal of Organic Chemistry, 2013, 78, 10154-10165.	3.2	32
96	Versatile Synthesis of Polyfunctionalized Carbazoles from (3-lodoindol-2-yl)butynols via a Gold-Catalyzed Intramolecular Iodine-Transfer Reaction. ACS Catalysis, 2015, 5, 3417-3421.	11.2	32
97	Highly Stereoselective Synthesis of cis- and trans-4-Benzoyl-2-oxozentidines. Heterocycles, 1986, 24, 1579.	0.7	32
98	A gold-catalysed imine–propargylamine cascade sequence: synthesis of 3-substituted-2,5-dimethylpyrazines and the reaction mechanism. Chemical Communications, 2014, 50, 4567-4570.	4.1	31
99	Thermally Induced Isomerization ofcis-1,3,4-Trisubstituted 2-Azetidinones. Journal of Organic Chemistry, 2000, 65, 4453-4455.	3.2	30
100	Novel N1â^'C4 β-Lactam Bond Breakage. Synthesis of Enantiopure α-Alkoxy-γ-keto Acid Derivativesâ€. Organic Letters, 2004, 6, 1765-1767.	4.6	30
101	Diastereoselectivity Enhancement in the 1,3-Cycloaddition of \hat{l}^2 -Lactam Aldehydes. Application to the Synthesis of Enantiopure Indolizidinone Amino Esters. Journal of Organic Chemistry, 2005, 70, 8890-8894.	3.2	30
102	Pd ^{II} â€Catalyzed Domino Heterocyclization/Crossâ€Coupling of αâ€Allenols and αâ€Allenic Esters: Efficient Preparation of Functionalized Butaâ€1,3â€dienyl Dihydrofurans. Chemistry - an Asian Journal, 2008, 3, 1140-1145.	3.3	30
103	Rhodium-Catalyzed Synthesis of 3-Hydroxy-β-lactams via Oxonium Ylide Generation: Three-Component Reaction between Azetidine-2,3-diones, Ethyl Diazoacetate, and Alcohols. Journal of Organic Chemistry, 2009, 74, 8421-8424.	3.2	30
104	Controlled Rearrangement of Lactamâ€Tethered Allenols with Brominating Reagents: A Combined Experimental and Theoretical Study on α―versus βâ€Keto Lactam Formation. Chemistry - A European Journal, 2011, 17, 11559-11566.	3.3	30
105	Striking Alkenol Versus Allenol Reactivity: Metalâ€Catalyzed Chemodifferentiating Oxycyclization of Enallenols. Chemistry - A European Journal, 2011, 17, 15005-15013.	3.3	30
106	Asymmetric synthesis of densely functionalized 3-substituted 3-hydroxy-β-lactams via novel, highly stereoselective Baylis-Hillman and allylation reactions of enantiopure 3-oxo-2-azetidinones. Tetrahedron Letters, 1999, 40, 7537-7540.	1.4	29
107	Gold-catalyzed heterocyclizations in alkynyl- and allenyl- \hat{l}^2 -lactams. Beilstein Journal of Organic Chemistry, 2011, 7, 622-630.	2.2	29
108	Regio- and Diastereoselective Synthesis of \hat{I}^2 -Lactam-Triazole Hybrids <i>via</i> Passerini/CuAAC Sequence. Journal of Organic Chemistry, 2012, 77, 6917-6928.	3.2	29

#	Article	IF	CITATIONS
109	New reactivity patterns of the .betalactam ring: tandem C3-C4 bond breakage-rearrangement of 4-acylor 4-imino-3,3-dimethoxy-2-azetidinones promoted by stannous chloride (SnCl2-2H2O). Journal of Organic Chemistry, 1993, 58, 4767-4770.	3.2	28
110	Stereocontrolled Access to Orthogonally Protected anti, anti-4-Aminopiperidine-3,5-diols through Chemoselective Reduction of Enantiopure β-Lactam Cyanohydrins. Journal of Organic Chemistry, 2007, 72, 7980-7991.	3.2	28
111	Stereoselective NaN3-catalyzed halonitroaldol-type reaction of azetidine-2,3-diones in aqueous media. Organic and Biomolecular Chemistry, 2008, 6, 1635.	2.8	28
112	Ring Enlargement versus Selenoetherification on the Reaction of Allenyl Oxindoles with Selenenylating Reagents. Journal of Organic Chemistry, 2012, 77, 3549-3556.	3.2	28
113	Gold-catalyzed oxycyclization of allenic carbamates: expeditious synthesis of 1,3-oxazin-2-ones. Beilstein Journal of Organic Chemistry, 2013, 9, 818-826.	2.2	28
114	Direct Metalâ€Free Entry to Aminocyclobutenes or Aminocyclobutenols from Ynamides: Synthetic Applications. Chemistry - A European Journal, 2016, 22, 8998-9005.	3.3	28
115	Chromium-carbene-mediated synthesis of 4-oxo .betalactams (malonimides) and malonic acid derivatives. Journal of Organic Chemistry, 1992, 57, 447-451.	3.2	27
116	Synthesis of novel functionalized monocyclic 2-azetidinones from N,N'-diaryl-α-diimines and lithium ester enolates. Tetrahedron, 1989, 45, 2751-2762.	1.9	26
117	The Intramolecular Aldol Condensation Route to Fused Bi- and Tricyclic \hat{l}^2 -Lactams 1,2. Journal of Organic Chemistry, 1996, 61, 7125-7132.	3.2	26
118	General and efficient synthesis of \hat{l}^2 -lactams bearing a quinone moiety at N1, C3 or C4 positions. Tetrahedron Letters, 2001, 42, 1503-1505.	1.4	26
119	Palladium-catalyzed carbocyclization–cross-coupling reactions of two different allenic moieties: synthesis of 3-(buta-1,3-dienyl) carbazoles and mechanistic insights. Chemical Communications, 2012, 48, 6604.	4.1	26
120	New synthesis of fused tricyclic 2-azetidinones using stereoselective allylation of cis-4-formyl-β-lactams and intramolecular Diels-Alder reaction. Tetrahedron Letters, 1999, 40, 1015-1018.	1.4	25
121	Lewis Acid-Promoted Intermolecular Carbonyl-ene Reaction of Enantiopure 4-Oxoazetidine-2-carbaldehydes. Rapid Entry to Novel Fused Polycyclic β-Lactams. Journal of Organic Chemistry, 2003, 68, 3106-3111.	3.2	25
122	Synthesis of fused or not β-lactam-biaryl hybrids by free radical aryl–aryl coupling of 2-azetidinone-tethered haloarenes. Tetrahedron, 2005, 61, 7894-7906.	1.9	25
123	Metalâ€Catalyzed Cycloisomerization and Tandem Oxycyclization/Hydroxylation of Alkynols: Synthesis of Nonfused, Spiranic and Fused Oxabicyclic βâ€Lactams. European Journal of Organic Chemistry, 2010, 2010, 4912-4919.	2.4	25
124	Metal-free [3+2] cycloaddition of azides with Tf ₂ Cî€CH ₂ for the regioselective preparation of elusive 4-(trifluoromethylsulfonyl)-1,2,3-triazoles. Chemical Communications, 2015, 51, 6992-6995.	4.1	25
125	Iminodithiocarbonates as Formaldehyde Imine Equivalents: Sequential Two Step Approach to 4-Unsubstituted .betaLactams through Chromium(0) Carbene Photocycloaddition-Nickel Boride Desulfurization. Journal of Organic Chemistry, 1994, 59, 7934-7936.	3.2	24
126	A New Radical Route to C4-Unsubstituted î²-Lactams. Tetrahedron Letters, 1998, 39, 163-166.	1.4	24

#	Article	IF	Citations
127	New domino transposition/intramolecular Diels–Alder reaction in monocyclic allenols: a general strategy for tricyclic compounds. Chemical Communications, 2002, , 1472-1473.	4.1	24
128	Scandiumâ€Catalyzed Preparation of Cytotoxic 3â€Functionalized Quinolinâ€2â€ones: Regioselective Ring Enlargement of Isatins or Imino Isatins. ChemPlusChem, 2012, 77, 563-569.	2.8	24
129	Divergence in Ynone Reactivity: Atypical Cyclization by 3,4â€Difunctionalization versus Rare Bis(cyclization). Chemistry - A European Journal, 2018, 24, 8186-8194.	3.3	24
130	Hexacarbonyl dicobalt complexed N-pro-2-ynyl-2-azetidinones: a new entry to N-unsubstituted- \hat{l}^2 -lactams through a Nicholas-type reaction. Journal of the Chemical Society Chemical Communications, 1994, , 587-588.	2.0	23
131	Gold-Catalyzed Reactivity Reversal of Indolizidinone-Tethered \hat{I}^2 -Amino Allenes Controlled by the Stereochemistry. ACS Catalysis, 2015, 5, 4842-4845.	11.2	23
132	Regioselective Synthesis of Heteroatomâ€Functionalized Cyclobuteneâ€triflones and Cyclobutenones. Advanced Synthesis and Catalysis, 2017, 359, 2630-2639.	4.3	23
133	Reaction of .alphadiketones with 2-amino alcohols. Intramolecular competitive 6-exo-trig vs 5-endo-trig processes. A systematic and kinetic study. Journal of Organic Chemistry, 1992, 57, 2446-2454.	3.2	22
134	1,3-Dipolar cycloaddition of 2-azetidinone-tethered azomethine ylides. Application to the rapid, stereocontrolled synthesis of optically pure highly functionalised pyrrolizidine systems. Chemical Communications, 2000, , 485-486.	4.1	22
135	Concise, Divergent Î ² -Lactam-based Route to Indolizidine and Quinolizidine Derivatives via Sequential Regio- and Stereocontrolled Intramolecular Nitrone-alkene Cycloadditions. Synlett, 2002, 2002, 0085-0088.	1.8	22
136	Free radical synthesis of benzofused tricyclic \hat{l}^2 -lactams by intramolecular cyclization of 2-azetidinone-tethered haloarenes. Tetrahedron, 2005, 61, 2767-2778.	1.9	22
137	Gold/Acidâ€Coâ€catalyzed Direct Microwaveâ€Assisted Synthesis of Fused Azaheterocycles from Propargylic Hydroperoxides. Chemistry - A European Journal, 2014, 20, 3384-3393.	3.3	22
138	A novel synthetic approach to α-alkylidene-α-lactams. Tetrahedron Letters, 1990, 31, 2493-2496.	1.4	21
139	Rapid Entry to Enantiopure Carbacepham Derivatives via Lewis Acid Promoted Carbonyl-Ene Cyclization of 2-Azetidinone-Tethered Alkenylaldehydes. Organic Letters, 2001, 3, 4205-4208.	4.6	21
140	Dual Behavior of 2-Azetidinone-Tethered Arylimines as Azadienophiles or Azadienes. Application to the Asymmetric Synthesis of Indolizidine-Type Systems. Synlett, 2001, 2001, 1531-1534.	1.8	21
141	Expeditious Entry to Enantiopure Mono†and Bis(Tricyclic) βâ€Lactams by Single or Double [2+2] Cycloaddition of Allenynes. European Journal of Organic Chemistry, 2011, 2011, 364-370.	2.4	21
142	lodine recycling via 1,3-migration in iodoindoles under metal catalysis. Chemical Communications, 2013, 49, 7779.	4.1	21
143	Thermal and photochemical reactions of chromium carbenes and sulfur ylides: an efficient entry to functionalized vinyl ethers. Organometallics, 1992, 11, 1979-1981.	2.3	20
144	Chromium(0) Carbene Complexes Bearing Imino Tethers: Synthesis and Photochemical Reactivity. Journal of the American Chemical Society, 1995, 117, 5604-5605.	13.7	20

#	Article	lF	Citations
145	The asymmetric synthesis of 2,3-benzocarbapenems by intramolecular aryl radical cyclizations. Tetrahedron: Asymmetry, 1996, 7, 2203-2206.	1.8	20
146	Functionalized eight-membered lactams via [3,3] sigmatropic rearrangement of 2-azetidinone-tethered 1,5-dienes. Tetrahedron Letters, 2001, 42, 3081-3083.	1.4	20
147	Stereoselective cyanation of 4-formyl and 4-imino-?-lactams: application to the synthesis of polyfunctionalized ?-lactams. Tetrahedron, 2012, 68, 10761-10768.	1.9	20
148	Gold-catalyzed direct cycloketalization of acetonide-tethered alkynes in the presence of water. Tetrahedron, 2012, 68, 9391-9396.	1.9	20
149	Gold as Catalyst for the Hydroarylation and Domino Hydroarylation/N1–C4 Cleavage of β-Lactam-Tethered Allenyl Indoles. Journal of Organic Chemistry, 2015, 80, 4650-4660.	3.2	20
150	A Simple Synthesis of 4-Acyl-2-oxoazetidines. Synthesis, 1982, 1982, 989-990.	2.3	19
151	Synthesis of fused tricyclic \hat{l}^2 -lactams by the Pauson-Khand cyclization of enyne-2-azetidinones. Tetrahedron Letters, 1996, 37, 6901-6904.	1.4	19
152	Synthesis of Novel Enantiopure 4-Hydroxypipecolic Acid Derivatives with a Bicyclic \hat{l}^2 -Lactam Structure from a Common 3-Azido-4-oxoazetidine-2-carbaldehyde Precursor. Journal of Organic Chemistry, 2008, 73, 1635-1638.	3.2	19
153	Heterocyclization of Allenes Catalyzed by Late Transition Metals: Mechanisms and Regioselectivity. Topics in Current Chemistry, 2011, 302, 183-224.	4.0	19
154	Gold-catalyzed bis-cyclization of 1,2-diol- or acetonide-tethered alkynes. Synthesis of ?-lactam-bridged acetals: a combined experimental and theoretical study. Tetrahedron, 2012, 68, 10748-10760.	1.9	19
155	Platinumâ€Catalyzed Divergent Reactivity of αâ€Hydroxyallenes: Synthesis of Dihydrofurans and α,βâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2013, 355, 2681-2685.	4.3	19
156	Synthesis of Fused-Î ² -Lactams through Selective Gold-Catalyzed Oxycyclization of Dioxolane-Tethered Enynes. Journal of Organic Chemistry, 2013, 78, 8956-8965.	3.2	19
157	Iron-catalyzed domino indole fluorination/allenic aza-Claisen rearrangement. Chemical Communications, 2016, 52, 6813-6816.	4.1	19
158	Ring Expansion of 4-Benzoyl-b-lactams. Heterocycles, 1987, 26, 1461.	0.7	19
159	On the reaction of phenylglyoxal with 2-aminopyridine. Tetrahedron Letters, 1986, 27, 1627-1630.	1.4	18
160	Reaction of arylglyoxals with 2-amino heterocycles. Journal of Organic Chemistry, 1989, 54, 5763-5768.	3.2	18
161	Reaction of chromium (Fischer) carbenes and sulfilimines. Journal of Organic Chemistry, 1993, 58, 3886-3894.	3.2	18
162	New Aspects of the Indium Chemistryof Carbonyl- \hat{l}^2 -lactams. Synthesis, 2003, 2003, 1163-1170.	2.3	18

#	Article	IF	CITATIONS
163	Anomalous Behaviour in Some Nucleophilic Ring Opening of Furyl-2-oxirane. Heterocycles, 1990, 31, 1997.	0.7	17
164	2,3-Diaza-1,3-dienes (Azines) as Substrates for the Staudinger Reaction. Synthesis and Reactivity of N-Iminobetalactams. Journal of Organic Chemistry, 1994, 59, 8003-8010.	3.2	17
165	Synthesis of 2-Acylvinyl Ethers by Reaction of Chromium (Fischer) Carbene Complexes and Stabilized Sulfur Ylides1. Organometallics, 1996, 15, 4612-4617.	2.3	17
166	New fragmentation and rearrangement reactions of the azetidine ring promoted by AlEt2Cl. Tetrahedron Letters, 1998, 39, 467-470.	1.4	17
167	Rapid entry to enantiopure polycyclic \hat{l}^2 -lactams via intramolecular nitrone-alkene cycloaddition of 2-azetidinone-tethered alkenylaldehydes. Tetrahedron Letters, 1999, 40, 5391-5394.	1.4	17
168	Reverse-Cope elimination versus 1,3-dipolar cycloaddition in the reaction of enantiopure 2-azetidinone-tethered alkynylaldehydes with N-methylhydroxylamine. Tetrahedron Letters, 2000, 41, 1647-1651.	1.4	17
169	Unusual reaction of azetidine-2,3-diones with primary amines. Straightforward asymmetric synthesis of α-amino acid and peptide derivatives. Chemical Communications, 2000, , 757-758.	4.1	17
170	Novel Aspects on the Preparation of Spirocyclic and Fused Unusual \hat{l}^2 -Lactams. Topics in Heterocyclic Chemistry, 2010, , 1-48.	0.2	17
171	Synthesis of Functionalized Azetidines through Chemoselective Zincâ€Catalyzed Reduction of βâ€Lactams with Silanes. Advanced Synthesis and Catalysis, 2013, 355, 2089-2094.	4.3	17
172	Metal-catalyzed rearrangements of 3-allenyl 3-hydroxyindolin-2-ones in the presence of halogenated reagents. Organic and Biomolecular Chemistry, 2013, 11, 1216.	2.8	17
173	Novel achievements with an old metal: copper-promoted synthesis of four-membered azacycles. RSC Advances, 2014, 4, 1689-1707.	3.6	17
174	An Alternative to Precious Metals: $Hg(ClO < sub > 4 < / sub > 2 < / sub > \hat{A} \cdot 3H < sub > 2 < / sub > 0$ as a Cheap and Water-Tolerant Catalyst for the Cycloisomerization of Allenols. Journal of Organic Chemistry, 2015, 80, 7050-7057.	3.2	17
175	Stereochemistry of imino group reduction. 2. Synthesis and assignment of configuration of some N-(1-phenylethyl)-1,2-diaryl-2-aminoethanols. Journal of Organic Chemistry, 1981, 46, 3234-3238.	3.2	16
176	A novel fragmentation of the .betalactam ring: stereoselective entry to vinyl ethers by reaction of N-(arylidene(or alkylidene)amino)-2-azetidinones with ozone. Journal of Organic Chemistry, 1993, 58, 297-298.	3.2	16
177	Reactions of stabilized sulfur ylides with $\hat{l}\pm,\hat{l}^2$ -unsaturated alkoxychromiumcarbene complexes. Tetrahedron, 1996, 52, 13215-13226.	1.9	16
178	Synthesis of Novel Bis(βâ€lactam)â€1,3â€diynes by Copperâ€Promoted Homo†or Crossâ€Coupling of Alkynylâ€2â€azetidinones. European Journal of Organic Chemistry, 2008, 2008, 1575-1581.	2.4	16
179	Direct allenol-based stereocontrolled access to substituted (E)-1,3-enynes. Organic and Biomolecular Chemistry, 2012, 10, 7603.	2.8	16
180	Gallium-Catalyzed Domino Arylation/Oxycyclization of Allenes with Phenols. Journal of Organic Chemistry, 2015, 80, 4157-4163.	3.2	16

#	Article	IF	Citations
181	Access to enantiopure polycyclic β-lactams by Diels–Alder reaction of novel inner-outer-ring 2-(silyloxy)dienes with a carbacepham skeleton. Tetrahedron Letters, 2004, 45, 7255-7259.	1.4	15
182	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2011, , 85-107.	0.5	15
183	Divergent Reactivity of Homologue <i>ortho</i> a∈Allenylbenzaldehydes Controlled by the Tether Length: Chromone versus Chromene Formation. Chemistry - A European Journal, 2015, 21, 1533-1541.	3.3	15
184	Palladium Nanoparticles in Water: A Reusable Catalytic System for the Cycloetherification or Benzannulation of αâ€Allenols. Advanced Synthesis and Catalysis, 2016, 358, 2000-2006.	4.3	15
185	Stereochemistry of imino-group reduction. Part 3. The hydride reduction of achiral benzil monoimines. Journal of the Chemical Society Perkin Transactions II, 1983, , 1649-1653.	0.9	14
186	A new approach to N-aryl- and N-(2-heteroaryl)imidates from chromium carbenes and sulfilimines. Organometallics, 1991, 10, 11-12.	2.3	14
187	Stereoselective Synthesis of Vinyl Ethers by the Reaction of N-(Arylidene(or) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 5	02 Td (allo
188	An Efficient Synthesis of Highly Functionalised 4-Substituted 2-Azetidinones by a Stereoselective Intermolecular Dielsâ-'Alder Reaction of Different Types of 2-Azetidinone-Tethered Dienes. European Journal of Organic Chemistry, 2001, 2001, 2001-2009.	2.4	14
189	N1–C4 β-Lactam Bond Cleavage in the 2-(Trimethylsilyl)thiazole Addition to β-Lactam Aldehydes: Asymmetric Synthesis of Spiranic and Tertiary α-Alkoxy-γ-keto Acid Derivatives. European Journal of Organic Chemistry, 2007, 2007, 3707-3710.	2.4	14
190	Organocatalytic direct aldol and nitroaldol reactions between azetidine-2,3-diones and ketones or nitromethane. Tetrahedron, 2007, 63, 3102-3107.	1.9	14
191	I2-Catalyzed enantioselective ring expansion of β-lactams to γ-lactams through a novel C3–C4 bond cleavage. Direct entry to protected 3,4-dihydroxypyrrolidin-2-one derivatives. Chemical Communications, 2008, , 615-617.	4.1	14
192	Direct FeX ₃ -Based Stereocontrolled Access to (<i>Z</i>)-3-Alkenyl-oxindoles from Allenols. Journal of Organic Chemistry, 2012, 77, 11388-11392.	3.2	14
193	Three-Step Metal-Promoted Allene-Based Preparation of Bis(heterocyclic) Cyclophanes from Carbonyl Compounds. Journal of Organic Chemistry, 2014, 79, 6244-6255.	3.2	14
194	A Versatile Synthesis of βâ€Lactamâ€Fused Oxacycles through the Palladiumâ€Catalyzed Chemoâ€, Regioâ€, and Diastereoselective Cyclization of Allenic Diols. Chemistry - A European Journal, 2015, 21, 2200-2213.	3.3	14
195	The unusual Baeyer-Villiger rearrangement of \hat{l}^2 -lactam aldehydes: Totally stereoselective entry to cis-3-substituted 4-formyloxy-2-azetidinones. Tetrahedron Letters, 1995, 36, 3401-3404.	1.4	13
196	Cationic Au ^{III} versus Au ^I : Catalystâ€Controlled Divergent Reactivity of Alkyneâ€Tethered Lactams. Chemistry - A European Journal, 2017, 23, 3012-3015.	3.3	13
197	Synthesis and Characterization of Stable Phosphorus Carbabetaines. Chemistry - an Asian Journal, 2018, 13, 1956-1961.	3.3	13
198	One-pot synthesis of N-(2-heteroaryl)alphaamino esters by the regiospecific 2-N-(.alphaalkoxycarbonyl)alkylation of 2-aminoazines and -azoles with glyoxals and alcohols promoted by perchloric acid. Journal of Organic Chemistry, 1990, 55, 3143-3147.	3.2	12

#	Article	IF	CITATIONS
199	The asymmetric synthesis of novel tin-functionalized carbapenam systems through radical cyclization of enyne \hat{l}^2 -lactams. Tetrahedron: Asymmetry, 1995, 6, 1055-1058.	1.8	12
200	Unusual Fused Tricyclic 2-Azetidinones: Stereocontrolled Synthesis of Rigid Dipeptide Surrogates from \hat{l}^2 -Lactam-Tethered Imines via Sequential Cycloaddition/Ring-Closing Metathesis. Synlett, 2001, 2001, 0773-0776.	1.8	12
201	Direct Synthesis of Protected Enantiopure 5-Cyano-3,4-dihydroxypyrrolidin-2-ones from \hat{l}^2 -Lactam Aldehydes Catalyzed by Iodine. Synthesis, 2008, 2008, 2835-2839.	2.3	12
202	Tunable Metal-Catalyzed Heterocyclization Reactions of Allenic Amino Alcohols: An Experimental and Theoretical Study. Journal of Organic Chemistry, 2016, 81, 7362-7372.	3.2	12
203	Metalâ€Free Alleneâ€Based Synthesis of Enantiopure Fused Polycyclic Sultones. Chemistry - A European Journal, 2016, 22, 285-294.	3.3	12
204	Oxidative selenofunctionalization of allenes: convenient access to 2-(phenylselanyl)-but-2-enals and 4-oxo-3-(phenylselanyl)pent-2-enoates. Organic Chemistry Frontiers, 2019, 6, 2447-2451.	4.5	12
205	Synthesis and reactions of novel substituted \hat{l}^2 -hydroxy- \hat{l} »-imino esters. Tetrahedron Letters, 1985, 26, 4403-4406.	1.4	11
206	Reaction of α-diketones with ethanolamine. Tetrahedron Letters, 1986, 27, 1381-1384.	1.4	11
207	Revision of the structure of a reaction product from butanedione and ethanolamine. Tetrahedron Letters, 1986, 27, 4217-4218.	1.4	11
208	The uncatalyzed ring opening of hetaryloxides with nitrogen nucleophiles. A dichotomy of regioselectivity Tetrahedron Letters, 1992, 33, 7413-7416.	1.4	11
209	Chromium Carbenes as Substrates in Cyclopropanation Reactions: 1,4- vs 1,2-Addition in the Reaction of Sulfur Ylides and .alpha.,.betaUnsaturated Alkoxychromium(0) Carbenes. Organometallics, 1994, 13, 2934-2936.	2.3	11
210	A Three-Step General Synthesis of 2-Azetidinones BearingN-Dehydroamino Acid Side Chains. European Journal of Organic Chemistry, 1998, 1998, 2913-2921.	2.4	11
211	Stereoselective Entry to Bicyclic \hat{l}^2 -Lactams via Free Radical Cyclization of 2-Azetidinone-Tethered Bromohomoallylic Alcohols. Synthesis, 2005, 2005, 2335-2340.	2.3	11
212	Chemoselective Deprotection of Allylic Amines Catalyzed by Grubbs' Carbene. Synthesis, 2005, 2005, 668-672.	2.3	11
213	Lewis Acidâ€Assisted Ene Cyclization of 2â€Azetidinoneâ€Tethered Enals: Synthesis of Enantiopure Carbacepham Derivatives. Chemistry - an Asian Journal, 2009, 4, 1604-1611.	3.3	11
214	Controlled Heterocyclization/Crossâ€Coupling Domino Reaction of β,γâ€Allendiols and αâ€Allenic Esters: Method and Mechanistic Insight for the Preparation of Functionalized Butaâ€1,3â€dienyl Dihydropyrans. Chemistry - A European Journal, 2013, 19, 14233-14244.	3.3	11
215	Microwave-Promoted Synthesis of Bicyclic Azocine-Î ² -Lactams from Bis(allenes). Journal of Organic Chemistry, 2014, 79, 7075-7083.	3.2	11
216	Investigation of the Passerini and Ugi reactions in \hat{l}^2 -lactam aldehydes. Synthetic applications. Organic and Biomolecular Chemistry, 2015, 13, 1387-1394.	2.8	11

#	Article	IF	CITATIONS
217	Allenols versus Allenones: Rhodiumâ€Catalyzed Regiodivergent and Tunable Allene Reactivity with Triazoles. Chemistry - A European Journal, 2017, 23, 13754-13759.	3.3	11
218	A Facile Synthesis of Blue Luminescent [7]Helicenocarbazoles Based on Gold atalyzed Rearrangementâ€lodonium Migration and Suzuki–Miyaura Benzannulation Reactions. Chemistry - A European Journal, 2018, 24, 7620-7625.	3.3	11
219	The reaction of α-diketones with primary heteroaromatic amines. Synthesis and reactions of imidazo[1, 2-a]pyridin-3(2H)-ones and N-heteroaryl α-iminoketones. Tetrahedron, 1989, 45, 6841-6856.	1.9	10
220	Indiumâ€Promoted Acyloxyallylation Reaction of Azetidineâ€2,3â€diones in Aqueous Media: A New Route to Densely Functionalized 3â€Substituted 3â€Hydroxyâ€Î²â€lactams. European Journal of Organic Chemistry, 2008, 2008, 4434-4439.	2.4	10
221	Synthesis of Fused Cyclopentenones through Palladiumâ€Catalyzed Cyclization of 2â€Iodoaryl Allenols. Advanced Synthesis and Catalysis, 2014, 356, 1370-1374.	4.3	10
222	Intramolecular 1,3-dipolar cycloaddition reaction of novel 2-azetidinone-tethered alkenyl nitrile oxides. Arkivoc, 2004, 2004, 137-152.	0.5	10
223	Orbital control in the 1,3-dipolar cycloaddition of benzonitrile oxide to benzylideneanilines. Canadian Journal of Chemistry, 1987, 65, 2050-2056.	1.1	9
224	Stereoelectronic effects in the conformational behavior and ring formation of some N,N′-dimethyland N,N′-diacetyl- 1,5-dioxa-4,8-diazadecalins Tetrahedron, 1992, 48, 2715-2728.	1.9	9
225	Convenient Access to 2,3â€Disubstitutedâ€cyclobutâ€2â€enâ€1â€ones under Suzuki Conditions and Their Synth Utility. Chemistry - A European Journal, 2019, 25, 7547-7552.	eţiç	9
226	Chemoselectivity Switching in the Rhodiumâ€Catalyzed Reactions of 4â€Substitutedâ€1â€sulfonylâ€1,2,3â€triazwith Allenols: Noticeable Differences between 4â€Acylâ€and 4â€Arylâ€Triazoles. Advanced Synthesis and Catalysis, 2019, 361, 1160-1165.	oles 4.3	9
227	The reaction of benzil and 2-aminopyridine. A correction. Tetrahedron Letters, 1985, 26, 247-248.	1.4	8
228	Anatomy of a three species tautomeric process: The ring-chain tautomerism in 5,6-dihydro-2-hydroxy-2,3-dimethyl-2H-1,4-oxazine. Tetrahedron Letters, 1990, 31, 4211-4214.	1.4	8
229	Synthesis of a New Class of <i>C</i> ₂ â€Symmetrical Biheteroaryls by Ammonium Cerium(IV) Nitrate Mediated Dimerization of 2â€(Furanâ€3â€yl)pyrroles. European Journal of Organic Chemistry, 2010, 2010, 823-826.	2.4	8
230	Acidâ€Catalyzed Synthesis of α,βâ€Disubstituted Conjugated Enones by a Meyer–Schusterâ€Type Rearrangem in Allenols. Advanced Synthesis and Catalysis, 2015, 357, 1070-1078.	ent 4.3	8
231	Alleneâ€Based Gold atalyzed Stereodivergent Synthesis of Azapolycyclic Derivatives of Unusual Structure. Advanced Synthesis and Catalysis, 2016, 358, 1469-1477.	4.3	8
232	Transition metal-free controlled synthesis of bis[(trifluoromethyl)sulfonyl]ethyl-decorated heterocycles. Organic Chemistry Frontiers, 2018, 5, 3163-3169.	4.5	8
233	Regioselective, uncatalyzed additions of alcohols and carboxylic acids to 2-furyloxirane. Synthetic applications Tetrahedron, 1992, 48, 9719-9724.	1.9	7
234	Chapter 4.2 Four-membered ring systems. Progress in Heterocyclic Chemistry, 2003, 15, 100-115.	0.5	7

#	Article	IF	CITATIONS
235	Highly Stereoselective Metalâ€Mediated Entry to Functionalized Tetrahydrothiophenes by Barbierâ€Type Carbonylâ€Addition Reactions. European Journal of Organic Chemistry, 2008, 2008, 2628-2634.	2.4	7
236	Metalâ€Catalyzed Cyclization Reactions of 2,3,4â€Trienâ€1â€ols: A Joint Experimentalâ€"Computational Study. Chemistry - A European Journal, 2016, 22, 11667-11676.	3.3	7
237	Stereospecific synthesis of <i>N</i> â€(1â€phenylethyl)â€2,4,5â€triphenyloxazolidines. Journal of Heterocyclic Chemistry, 1982, 19, 45-48.	2.6	6
238	Polycyclic analogues of trans-decalones. Part 6. Synthesis, optical resolution and circular dichroism of trans-transoid-trans-perhydrophenanthren-1-one and trans-transoid-trans-perhydrophenanthren-2-one. Journal of the Chemical Society Perkin Transactions 1, 1983, , 1665-1671.	0.9	6
239	Stereochemistry of imino-group reduction. Part 6. Stereochemistry of reduction of 1,2-imino ketones having a pre-existing chiral centre. Synthesis of amino alcohols with three chiral centres. Journal of the Chemical Society Perkin Transactions II, 1986, , 99-103.	0.9	6
240	Regiocontrolled addition in the reaction of -(\hat{l} ±-methoxyphenacyl)anilines with methyl lithiobutyrate. Tetrahedron Letters, 1986, 27, 5129-5132.	1.4	6
241	Regiocontrolled nucleophilic addition to the carbonyl and imino groups in the reaction of 2-arylamino-2-methoxy-1-phenylethanones with simple lithium ester enolates. Tetrahedron, 1990, 46, 6799-6820.	1.9	6
242	The use of aqueous dimethylamine as reagent for the regiospecific C4-epimerization of cis-3-substituted 4-formyl-2-azetidinones. Tetrahedron Letters, 1998, 39, 5865-5866.	1.4	6
243	Stereoselective synthesis of strained cage compounds via gold-catalyzed allene functionalization. Chemical Communications, 2016, 52, 10265-10268.	4.1	6
244	Gold-catalyzed preparation of annelated 2-azetidinones via divergent heterocyclization of enyne-tethered oxazolidines. Organic Chemistry Frontiers, 2018, 5, 817-821.	4.5	6
245	Goldâ€Catalyzed Divergent Ringâ€Closing Modes of Indoleâ€Tethered Amino Allenynes. Chemistry - A European Journal, 2018, 24, 1448-1454.	3.3	6
246	Polycyclic analogues of trans-decalones. Part 5. Synthesis, optical resolution and circular dichroism of trans-transoid-trans-perhydrophenanthren-3-one and trans-transoid-trans-perhydrophenanthren-9-one. Journal of the Chemical Society Perkin Transactions 1, 1982, , 2117-2122.	0.9	5
247	Synthesis and Reactions of Novel Substituted 3-Hydroxy-5-iminoalkanoic Esters. Synthesis, 1988, 1988, 440-444.	2.3	5
248	1,3-iminoketones as new synthons for the stereocontrolled preparation of useful carbapenem intermediates. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 2369-2374.	2.2	5
249	The uncatalyzed alcoholysis of furyl-2-oxirane. A mechanistic study based on kinetic data. Tetrahedron, 1994, 50, 5555-5560.	1.9	5
250	Synthesis of α-hydroxy acid derivatives by the photochemical reaction of O-silylchromium(0) carbene complexes and nucleophiles. Inorganica Chimica Acta, 1994, 222, 261-266.	2.4	5
251	Four-membered ring systems. Progress in Heterocyclic Chemistry, 2005, , 64-83.	0.5	5
252	De Novo Synthesis of αâ€Hydroxy Ketones by Gallic Acidâ€Promoted Aerobic Coupling of Terminal Alkynes with Diazonium Salts. Chemistry - A European Journal, 2017, 23, 17227-17230.	3.3	5

#	Article	IF	CITATIONS
253	A Novel Synthesis of Benzo-1,4-dithiene. Heterocycles, 1986, 24, 141.	0.7	5
254	Uncatalyzed addition of alcohols and amines to the Cî—»N bond of the monoimine from benzil and 2-aminopyridine. Tetrahedron Letters, 1982, 23, 5585-5586.	1.4	4
255	The stereoselective reduction of $\hat{l}\pm$ -aminodeoxybenzoin derivatives with sodium borohydride. Tetrahedron Letters, 1982, 23, 2033-2036.	1.4	4
256	Synthesis of Optically Pure 2-Azetidinones Having N-Dehydroamino Acid Side-Chains. Synlett, 1998, 1998, 416-418.	1.8	4
257	Chapter 4: Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2009, , 74-93.	0.5	4
258	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2011, 23, 101-125.	0.5	4
259	The regio- and stereocontrolled ring opening of heteroarylglycidates with nitrogen nucleophiles. Tetrahedron Letters, 1995, 36, 5417-5420.	1.4	4
260	Novel Mechanistic Aspects of the 4-Acyl-b-lactam Formation from 1,2-Iminoketones. Heterocycles, 1988, 27, 1317.	0.7	4
261	Polycyclic analogues of trans-decalones. Part 4. Synthesis, optical resolution, and circular dichroism of trans-anti-trans-perhydrophenanthren-4-one. Journal of the Chemical Society Perkin Transactions 1, 1981, , 2250-2252.	0.9	3
262	Synthesis of 4â€substituted 5,6â€diphenylmorpholineâ€2,3â€diones with two or three chiral centers. Journal of Heterocyclic Chemistry, 1985, 22, 289-291.	2.6	3
263	Chapter 4 Four-membered ring systems. Progress in Heterocyclic Chemistry, 2005, 16, 82-97.	0.5	3
264	Synthesis of Five-Membered Heterocycles Through \hat{l}^2 -Lactam Ring-Expansion Reaction. , 2017, , 163-218.		3
265	Synthesis of 5-Acyl-3,4-diaryl-4,5-dihydro-1,2,4-oxadiazoles. Synthesis, 1983, 1983, 486-488.	2.3	2
266	Stéréochimie de la réduction des α-iminocétones. Étude de l'effet des substituants par une approche quantitative des facteurs gouvernant la stéréosélectivité. Canadian Journal of Chemistry, 1985, 63, 2241-2244.	1,1	2
267	Reaction of N-trimethylsilyl benzil monoimine with simple lithium ester enolates. A synthetic tool for the regioselective one-pot preparation of novel polyfunctional pyrrolines. Journal of the Chemical Society Perkin Transactions 1, 1990, , 2451-2457.	0.9	2
268	Four-membered ring systems. Progress in Heterocyclic Chemistry, 2007, , 106-125.	0.5	2
269	Chapter 4: Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2009, , 94-114.	0.5	2
270	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2012, 24, 115-137.	0.5	2

#	Article	IF	Citations
271	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2013, 25, 71-96.	0.5	2
272	SYNTHESIS OF \hat{i}_{\pm} -AMINOKETONES BY CATALYTIC HYDROGENATION OF BENZILMONOIMINES. Organic Preparations and Procedures International, 1982, 14, 220-224.	1.3	1
273	Reduction of the benzoyl group in substituted 5-benzoyl-4,5-dihydro-1,2,4-oxadiazoles. Journal of Heterocyclic Chemistry, 1984, 21, 919-921.	2.6	1
274	Configurational assignment to N-(1-phenylalkyl)-substituted 2-amino-1,2-diphenylethanols. Journal of the Chemical Society Perkin Transactions II, 1986, , 93-97.	0.9	1
275	Chapter 4 Four-membered ring systems. Progress in Heterocyclic Chemistry, 2008, 19, 92-111.	0.5	1
276	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2014, , 85-113.	0.5	1
277	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2015, 27, 87-115.	0.5	1
278	Ring Expansions of \hat{l}^2 -Lactams and \hat{l}^2 -(thio)lactones. Topics in Heterocyclic Chemistry, 2015, , 233-280.	0.2	1
279	A Three-Step General Synthesis of 2-Azetidinones Bearing N-Dehydroamino Acid Side Chains. European Journal of Organic Chemistry, 1998, 1998, 2913-2921.	2.4	1
280	Recent Advances in the Stereocontrolled Synthesis of Bi- and Tricyclic \hat{l}^2 -Lactams with Non-Classical Structure. ChemInform, 2003, 34, no-no.	0.0	0
281	Efficient Entry to Highly Functionalized \hat{l}^2 -Lactams by Regio- and Stereoselective 1,3-Dipolar Cycloaddition Reaction of 2-Azetidinone-Tethered Nitrones. Synthetic Applications ChemInform, 2003, 34, no.	0.0	0
282	The Direct Catalytic Asymmetric Cross-Aldol Reaction of Aldehydes ChemInform, 2003, 34, no.	0.0	0
283	Asymmetric Synthesis of Unusual Fused Tricyclic β-Lactam Structures via Aza-Cycloadditions/Ring Closing Metathesis ChemInform, 2003, 34, no.	0.0	0
284	Non-Metathetic Behavior Patterns of Grubbs′ Carbene. ChemInform, 2003, 34, no.	0.0	0
285	Lewis Acid-Promoted Intermolecular Carbonyl-ene Reaction of Enantiopure 4-Oxoazetidine-2-carbaldehydes. Rapid Entry to Novel Fused Polycyclic Î ² -Lactams ChemInform, 2003, 34, no.	0.0	0
286	Useful Dual Diels—Alder Behavior of 2-Azetidinone-Tethered Aryl Imines as Azadienophiles or Azadienes: A β-Lactam-Based Stereocontrolled Access to Optically Pure Highly Functionalized Indolizidine Systems ChemInform, 2003, 34, no.	0.0	0
287	Structurally Novel Bi- and Tricyclic \hat{l}^2 -Lactams via $[2+2]$ Cycloaddition or Radical Reactions in 2-Azetidinone-Tethered Enallenes and Allenynes ChemInform, 2004, 35, no.	0.0	0
288	Novel Ruthenium-Catalyzed Cleavage of Allyl Protecting Group in Lactams ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	Citations
289	Ruthenium-Catalyzed Chemoselective N-Allyl Cleavage: Novel Grubbs′ Carbene Mediated Deprotection of Allylic Amines ChemInform, 2004, 35, no.	0.0	O
290	Synthesis of Optically Pure Highly Functionalized \hat{I}^3 -Lactams via 2-Azetidinone-Tethered Iminophosphoranes ChemInform, 2004, 35, no.	0.0	0
291	Straightforward Asymmetric Entry to Highly Functionalized 3-Substituted 3-Hydroxy-β-lactams via Baylis—Hillman or Bromoallylation Reactions ChemInform, 2004, 35, no.	0.0	0
292	Novel N1â€"C4 β-Lactam Bond Breakage. Synthesis of Enantiopure α-Alkoxy-γ-keto Acid Derivatives ChemInform, 2004, 35, no.	0.0	0
293	The Allenic Pauson—Khand Reaction in Synthesis. ChemInform, 2004, 35, no.	0.0	0
294	Metal-Assisted Synthesis of Enantiopure Spirocyclic \hat{l}^2 -Lactams from Azetidine-2,3-diones ChemInform, 2004, 35, no.	0.0	0
295	Stereoselective Synthesis of 1,2,3-Trisubstituted 1,3-Dienes Through Novel [3,3]-Sigmatropic Rearrangements in ?-Allenic Methanesulfonates: Application to the Preparation of Fused Tricyclic Systems by Tandem Rearrangement/Diels?Alder Reaction ChemInform, 2005, 36, no.	0.0	0
296	Stereoselective Synthesis of 1,2,3-Trisubstituted 1,3-Dienes Through Novel [3,3]-Sigmatropic Rearrangements in ?-Allenic Methanesulfonates: Application to the Preparation of Fused Tricyclic Systems by Tandem Rearrangement/Diels?Alder Reaction ChemInform, 2005, 36, no.	0.0	0
297	Free Radical Synthesis of Benzofused Tricyclic β-Lactams by Intramolecular Cyclization of 2-Azetidinone-Tethered Haloarenes ChemInform, 2005, 36, no.	0.0	0
298	Novel Carbonyl Bromoallylation/Heck Reaction Sequence. Stereocontrolled Access to Bicyclic \hat{l}^2 -Lactams ChemInform, 2005, 36, no.	0.0	0
299	Metal-Mediated Entry to Functionalized 3-Substituted 3-Hydroxyindolin-2-ones via Regiocontrolled Carbonylallylation, Bromoallylation, 1,3-Butadien-2-ylation, Propargylation, or Allenylation Reactions of Isatins in Aqueous Media ChemInform, 2005, 36, no.	0.0	0
300	Synthesis of Fused or Not β-Lactam-biaryl Hybrids by Free Radical Arylâ€"Aryl Coupling of 2-Azetidinone-tethered Haloarenes ChemInform, 2005, 36, no.	0.0	0
301	Organocatalytic Ring Expansion of β-Lactams to γ-Lactams Through a Novel N1â€"C4 Bond Cleavage. Direct Synthesis of Enantiopure Succinimide Derivatives ChemInform, 2006, 37, no.	0.0	0
302	Stereoselective Entry to Bicyclic \hat{l}^2 -Lactams via Free Radical Cyclization of 2-Azetidinone-Tethered Bromohomoallylic Alcohols ChemInform, 2006, 37, no.	0.0	0
303	New Domino Transposition/Intramolecular Diels—Alder Reaction in Monocyclic Allenols: A General Strategy for Tricyclic Compounds ChemInform, 2002, 33, 46-46.	0.0	0
304	Metal-Mediated Synthesis of Nonaromatic Oxacycles From Allenols. , 2018, , 1-31.		0
305	Organocatalyzed diastereoselective Henry reaction of enantiopure 4-oxoazetidine-2-carbaldehydes. Arkivoc, 2007, 2007, 285-296.	0.5	0