Pieter Samyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3439609/publications.pdf

Version: 2024-02-01

185998 214527 3,052 160 28 47 citations h-index g-index papers 160 160 160 3085 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	LiNi0.5Mn1.5O4-δ (LNMO) as Co-free cathode for lithium ion batteries via solution-gel synthesis: Particle size and morphology investigation. Journal of Alloys and Compounds, 2022, 892, 162175.	2.8	12
2	Physicochemical and thermal characterization of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) films incorporating thyme essential oil for active packaging of white bread. Food Control, 2022, 133, 108688.	2.8	35
3	Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: Formulations, regulations, and emerging applications. Carbohydrate Polymers, 2022, 278, 118956.	5.1	60
4	Active coating for packaging papers with controlled thermal release of encapsulated plant oils. Surfaces and Interfaces, 2022, 32, 102106.	1.5	1
5	Polydopamine and Cellulose: Two Biomaterials with Excellent Compatibility and Applicability. Polymer Reviews, 2021, 61, 814-865.	5.3	25
6	Micromechanical and microstructural analysis of Fe-rich plasma slag-based inorganic polymers. Cement and Concrete Composites, 2021, 118, 103968.	4.6	6
7	A platform for functionalization of cellulose, chitin/chitosan, alginate with polydopamine: A review on fundamentals and technical applications. International Journal of Biological Macromolecules, 2021, 178, 71-93.	3.6	49
8	Active Barrier Coating for Packaging Paper with Controlled Release of Sunflower Oils. Molecules, 2021, 26, 3561.	1.7	6
9	Fe-TiO2/AC and Co-TiO2/AC Composites: Novel Photocatalysts Prepared from Waste Streams for the Efficient Removal and Photocatalytic Degradation of Cibacron Yellow F-4G Dye. Catalysts, 2021, 11, 1137.	1.6	5
10	Biochar from raw and spent common ivy: Impact of preprocessing and pyrolysis temperature on biochar properties. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105294.	2.6	15
11	Extrusion and Injection Molding of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) (PHBHHx): Influence of Processing Conditions on Mechanical Properties and Microstructure. Polymers, 2021, 13, 4012.	2.0	11
12	Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. Nanomaterials, 2021, 11, 3008.	1.9	63
13	Plasma-Induced Fibrillation and Surface Functionalization of Cellulose Microfibrils. Engineering Proceedings, 2021, 11, .	0.4	O
14	Algae for Nanocellulose Production. Nanotechnology in the Life Sciences, 2021, , 293-343.	0.4	1
15	Fractionation and Homogenization of Recuperated Pulp Fibers from Brazilian Paper and Pulp Industry. , 2021, 13, .		O
16	Current Alternatives for In-Can Preservation of Aqueous Paints: A Review., 2021, 7,.		1
17	Novel processing of polyhydroxybutyrate with micro- to nanofibrillated cellulose and effect of fiber morphology on crystallization behaviour of composites. EXPRESS Polymer Letters, 2020, 14, 115-133.	1.1	12
18	Radiological and leaching assessment of an ettringite-based mortar from ladle slag and phosphogypsum. Cement and Concrete Research, 2020, 128, 105954.	4.6	24

#	Article	IF	CITATIONS
19	Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale, 2020, 12, 22845-22890.	2.8	108
20	Compression Molding of Polyhydroxybutyrate Nano-Composite Films as Coating on Paper Substrates. Materials Proceedings, 2020, 2, 31.	0.2	1
21	Engineering the Cellulose Fiber Interface in a Polymer Composite by Mussel-Inspired Adhesive Nanoparticles with Intrinsic Stress-Sensitive Responsivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28819-28830.	4.0	12
22	Morphology, Rheology and Crystallization in Relation to the Viscosity Ratio of Polystyrene/Polypropylene Polymer Blends. Materials, 2020, 13, 926.	1.3	24
23	Improvement of a new acoustic emission analysis technique to determine the activated carbon saturation level: A comparative study. Journal of Environmental Chemical Engineering, 2020, 8, 103794.	3.3	4
24	Monitoring Variations in Thermal Curing of Nanoparticle Coatings through Confocal Raman Microscopy and Principal Component Analysis. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900651.	0.8	1
25	Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Cement and Concrete Research, 2020, 132, 106054.	4.6	83
26	Self-assembly of microsystem components with micrometer gluing pads through capillary forces. Journal of Manufacturing Processes, 2020, 53, 376-387.	2.8	3
27	Melt-Processing of Biopolymer Composites with Nanocellulose Additives. , 2020, , 28-36.		0
28	Design of Cellulose Interfaces through Self-Assembly of Adhesive Peptides with Intrinsic Stress Sensitive Properties. , 2020, 69, .		0
29	Surface Chemistry of Oil-Filled Organic Nanoparticle Coated Papers Analyzed Using Micro-Raman Mapping. Applied Spectroscopy, 2019, 73, 000370281880486.	1.2	3
30	X-ray absorption as an alternative method to determine the exhausting degree of activated carbon layers in water treatment system for medical services. Talanta, 2019, 205, 120058.	2.9	7
31	Fenton-Mediated Biodegradation of Chlorendic Acid – A Highly Chlorinated Organic Pollutant – By Fungi Isolated From a Polluted Site. Frontiers in Microbiology, 2019, 10, 1892.	1.5	12
32	Numerical prediction of the mean residence time of solid materials in a pilot-scale rotary kiln. Powder Technology, 2019, 354, 392-401.	2.1	13
33	Radiological and non-radiological leaching assessment of alkali-activated materials containing ground granulated blast furnace slag and phosphogypsum. Science of the Total Environment, 2019, 660, 1098-1107.	3.9	18
34	Ethylene Vinyl Alcohol Copolymer (EVOH) as a Functional Barrier against Surrogate Components Migrating from Paperboard. Journal of Chemistry, 2019, 2019, 1-7.	0.9	5
35	The effect of gamma radiation on the mechanical and microstructural properties of Fe-rich inorganic polymers. Journal of Nuclear Materials, 2019, 521, 126-136.	1.3	11
36	Confining acrylate-benzophenone copolymers into adhesive micropads by photochemical crosslinking. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 80-91.	2.0	5

#	Article	IF	CITATIONS
37	Charge-Discharge Characteristics of Textile Energy Storage Devices Having Different PEDOT:PSS Ratios and Conductive Yarns Configuration. Polymers, 2019, 11, 345.	2.0	20
38	Cellulose Nanofibers: Fabrication and Surface Functionalization Techniques., 2019, , 1-41.		2
39	Dewetting and photochemical crosslinking of adhesive pads onto lithographically patterned surfaces. Journal of Applied Polymer Science, 2019, 136, 47321.	1.3	3
40	Microwave assisted and conventional pyrolysis of MDF \hat{a} Characterization of the produced biochars. Journal of Analytical and Applied Pyrolysis, 2019, 138, 218-230.	2.6	52
41	Native Crystalline Polysaccharide Nanofibers: Processing and Properties. , 2019, , 287-321.		1
42	Cellulose Nanofibers: Fabrication and Surface Functionalization Techniques., 2019,, 409-449.		21
43	Nanoparticle Structures with (Un-)Hydrogenated Castor Oil as Hydrophobic Paper Coating. Journal of Nanoscience and Nanotechnology, 2018, 18, 3639-3653.	0.9	1
44	Review: nanoparticles and nanostructured materials in papermaking. Journal of Materials Science, 2018, 53, 146-184.	1.7	104
45	Effects of atmospheric plasma treatment on adhesion and tribology of aromatic thermoplastic polymers. Polymer Engineering and Science, 2018, 58, E93.	1.5	20
46	Native Crystalline Polysaccharide Nanofibers: Processing and Properties. , 2018, , 1-36.		4
47	Adhesion and sliding tribological properties of polyolefins treated by diffuse coplanar surface barrier discharges. EXPRESS Polymer Letters, 2018, 12, 972-985.	1.1	4
48	The Sycamore Maple Bacterial Culture Collection From a TNT Polluted Site Shows Novel Plant-Growth Promoting and Explosives Degrading Bacteria. Frontiers in Plant Science, 2018, 9, 1134.	1.7	13
49	Design of interfaces with lithographically patterned adhesive pads for gluing at the microscale. International Journal of Adhesion and Adhesives, 2018, 85, 88-99.	1.4	0
50	Raman Microscopy for Classification and Chemical Surface Mapping of Barrier Coatings on Paper with Oil-Filled Organic Nanoparticles. Coatings, 2018, 8, 154.	1.2	0
51	Alkali-activated materials for radionuclide immobilisation and the effect of precursor composition on Cs/Sr retention. Journal of Nuclear Materials, 2018, 510, 575-584.	1.3	12
52	Engineered nanomaterials for papermaking industry., 2018,, 245-277.		8
53	Reciprocating sliding of polyester textile fabric composites along different fabric orientations. Journal of Composite Materials, 2017, 51, 221-240.	1.2	7
54	Temperature Effects on Friction and Wear of Thermoset Polyester Fabric Composites. Polymer-Plastics Technology and Engineering, 2017, 56, 1003-1016.	1.9	12

#	Article	lF	Citations
55	Lateral mapping of poly(styrene-co-maleimide) nanoparticle coatings on paper by confocal Raman microscopy. Vibrational Spectroscopy, 2017, 88, 27-39.	1.2	4
56	Review of recent research on flexible multifunctional nanopapers. Nanoscale, 2017, 9, 15181-15205.	2.8	126
57	Influence of synthesis conditions on thermal release of palm oil as liquid core filled in polymeric nanoparticles. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1973-1986.	2.0	1
58	Synthesis of Polyhydroxybutyrate Particles with Micro-to-Nanosized Structures and Application as Protective Coating for Packaging Papers. Nanomaterials, 2017, 7, 5.	1.9	15
59	Specular gloss versus surface topography for oilâ€filled nanoparticle coatings on paper. Color Research and Application, 2016, 41, 596-610.	0.8	2
60	Tribological properties and thermomechanical analysis of unsaturated polyester fabric composite in oscillating line-contact sliding. Tribology International, 2016, 99, 127-139.	3.0	13
61	Rheological behaviour of oil-filled polymer nanoparticles in aqueous dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 499, 31-45.	2.3	6
62	Thermal release of vegetable oils loaded in hydrophobic polymer nanoparticles. European Journal of Lipid Science and Technology, 2016, 118, 56-71.	1.0	4
63	Rheology of fibrillated cellulose suspensions after surface modification by organic nanoparticle deposits. Journal of Materials Science, 2016, 51, 9830-9848.	1.7	6
64	Effect of homogenization (microfluidization) process parameters in mechanical production of microand nanofibrillated cellulose on its rheological and morphological properties. Cellulose, 2016, 23, 1221-1238.	2.4	81
65	Tuning thermal release kinetics of soy oil from organic nanoparticles using variable synthesis conditions. Particuology, 2016, 26, 54-65.	2.0	3
66	Reaction efficiency and retention of poly(styrene- co-maleimide) nanoparticles deposited on fibrillated cellulose surfaces. Carbohydrate Polymers, 2016, 141, 244-252.	5.1	10
67	Relation between optical non-contact profilometry and AFM roughness parameters on coated papers with oil-filled nanoparticles. Measurement: Journal of the International Measurement Confederation, 2016, 82, 75-93.	2.5	16
68	Bio-Based Coatings for Paper Applications. Coatings, 2015, 5, 887-930.	1.2	223
69	Kaolinite Nanocomposite Platelets Synthesized by Intercalation and Imidization of Poly(styrene-co-maleic anhydride). Materials, 2015, 8, 4363-4388.	1.3	13
70	Rheological Properties and Processing of Polymer Blends with Micro- and Nanofibrillated Cellulose., 2015,, 259-291.		7
71	Synthesis of imidized nanoparticles containing soy oil under various reaction conditions. European Polymer Journal, 2015, 66, 78-90.	2.6	7
72	Hybrid palm-oil/styrene-maleimide nanoparticles synthesized in aqueous dispersion under different conditions. Journal of Microencapsulation, 2015, 32, 336-348.	1.2	10

#	Article	IF	CITATIONS
73	Mechanism for Tuning the Hydrophobicity of Microfibrillated Cellulose Films by Controlled Thermal Release of Encapsulated Wax. Materials, 2014, 7, 7196-7216.	1.3	13
74	Morphologies and Thermal Variability of Patterned Polymer Films with Poly(styrene-co-maleic) Tj ETQq0 0 0 rgBT	/Oyerlock	19 Tf 50 702
7 5	Fluorescent sensibility of microarrays through functionalized adhesive polydiacetylene vesicles. Sensors and Actuators A: Physical, 2014, 214, 45-57.	2.0	3
76	Novel production method for in-situ hydrophobization of a microfibrillated cellulose network. Materials Letters, 2014, 120, 196-199.	1.3	6
77	Performance of organic nanoparticle coatings for hydrophobization of hardwood surfaces. Journal of Coatings Technology Research, 2014, 11, 461-471.	1.2	15
78	Thermo-analytical study on transitions in styrene–maleic anhydride copolymers with low- and high-molecular weights. Thermochimica Acta, 2014, 580, 28-37.	1.2	6
79	Colorimetric sensing properties of catechol-functional polymerized vesicles in aqueous solution and at solid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 242-254.	2.3	11
80	The effect of temperature and drawing ratio on the mechanical properties of polypropylene monofilaments. , 2014, , .		2
81	Corrosion Protection of Aluminum by Hydrophobization Using Nanoparticle Polymer Coatings Containing Plant Oil. Journal of the Brazilian Chemical Society, 2014, , .	0.6	6
82	Wetting and hydrophobic modification of cellulose surfaces for paper applications. Journal of Materials Science, 2013, 48, 6455-6498.	1.7	157
83	Hydrophobic waterborne coating for cellulose containing hybrid organic nanoparticle pigments with vegetable oils. Cellulose, 2013, 20, 2625-2646.	2.4	15
84	Insights in the molecular structure of low- and high-molecular weight poly(styrene-maleic) Tj ETQq0 0 0 rgBT /Ove	erlock 10 1 1.8	rf <u>59</u> 302 Td
85	Gloss, hydrophobicity and surface texture of papers with organic nanoparticle coatings. Nordic Pulp and Paper Research Journal, 2013, 28, 28-41.	0.3	2
86	Quality and Statistical Classification of Brazilian Vegetable Oils Using Mid-Infrared and Raman Spectroscopy. Applied Spectroscopy, 2012, 66, 552-565.	1.2	33
87	Quality of Brazilian vegetable oils evaluated by (modulated) differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 2012, 110, 1353-1365.	2.0	33
88	Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	25
89	Metastable Patterning of Plasma Nanocomposite Films by Incorporating Cellulose Nanowhiskers. Langmuir, 2012, 28, 1427-1438.	1.6	22
90	Synthesis and characterization of imidized poly(styreneâ€maleic anhydride) nanoparticles in stable aqueous dispersion. Polymers for Advanced Technologies, 2012, 23, 311-325.	1.6	37

#	Article	IF	Citations
91	How Thermal Curing of an Organic Paper Coating Changes Topography, Chemistry, and Wettability. Langmuir, 2011, 27, 8509-8521.	1.6	20
92	Plasma deposition of polymer composite films incorporating nanocellulose whiskers. EPJ Applied Physics, 2011, 56, 24015.	0.3	7
93	Creating water-repellent and super-hydrophobic cellulose substrates by deposition of organic nanoparticles. Materials Letters, 2011, 65, 1781-1784.	1.3	47
94	Surface-Attached, Polymerized Vesicles Exposing Adhesive Peptide Functionalities. ACS Symposium Series, 2011, , 225-248.	0.5	0
95	Application of polymer nanoparticle coating for tuning the hydrophobicity of cellulosic substrates. Journal of Coatings Technology Research, 2011, 8, 363-373.	1.2	17
96	Paper coatings with multi-scale roughness evaluated at different sampling sizes. Applied Surface Science, 2011, 257, 5613-5625.	3.1	29
97	Role of internal additives in the friction and wear of carbonâ€fiberâ€reinforced polyimide. Journal of Applied Polymer Science, 2010, 116, 1146-1156.	1.3	16
98	Modifications of paper and paperboard surfaces with a nanostructured polymer coating. Progress in Organic Coatings, 2010, 69, 442-454.	1.9	51
99	Evaluation of morphology and deposits on worn polyimide/graphite composite surfaces by contact-mode AFM. Wear, 2010, 270, 57-72.	1.5	9
100	Micro- to nanoscale surface morphology and friction response of tribological polyimide surfaces. Applied Surface Science, 2010, 256, 3394-3408.	3.1	26
101	Polymerizable Biomimetic Vesicles with Controlled Local Presentation of Adhesive Functional DOPA Groups. Langmuir, 2010, 26, 8573-8581.	1.6	27
102	TRIBOPHYSICAL INTERPRETATION OF POLYMER SLIDING MECHANISMS., 2009,, 38-73.		1
103	SCALING EFFECTS IN TRIBOTESTING OF POLYMERS. , 2009, , 74-107.		0
104	Thermochemical sliding interactions of short carbon fiber polyimide composites at high pv-conditions. Materials Chemistry and Physics, 2009, 115, 185-195.	2.0	37
105	Reciprocative sliding friction and wear properties of electrical discharge machined ZrO ₂ â€based composites. Lubrication Science, 2009, 21, 378-396.	0.9	2
106	Influence of Internal Lubricants (PTFE and Silicon Oil) in Short Carbon Fibre-Reinforced Polyimide Composites on Performance Properties. Tribology Letters, 2009, 36, 135-146.	1.2	26
107	Selfâ€lubricating and selfâ€protecting properties of polymer composites for wear and friction applications. Polymer Composites, 2009, 30, 932-940.	2.3	9
108	Tribological properties of PTFEâ€filled thermoplastic polyimide at high load, velocity, and temperature. Polymer Composites, 2009, 30, 1631-1646.	2.3	41

#	Article	IF	CITATIONS
109	Frictional stability of pure and internally lubricated polyamides on a mesoâ€scale tribotester. Industrial Lubrication and Tribology, 2009, 61, 100-110.	0.6	O
110	Self-Healing of a Soft Primer Coating Caused by Plasticization during Sliding against UHMWPE., 2009,, 260-261.		0
111	Experimental extrapolation model for friction and wear of polymers on different testing scales. International Journal of Mechanical Sciences, 2008, 50, 1390-1403.	3.6	19
112	On the Repeatability of Friction and Wear Tests for Polyimides in a Hertzian Line Contact. Experimental Mechanics, 2008, 48, 233-246.	1.1	10
113	Tribochemical reactions on polyimide sliding surfaces evaluated with Raman spectroscopy and atomic force microscopy. Surface and Interface Analysis, 2008, 40, 853-857.	0.8	6
114	Calculation and significance of the maximum polymer surface temperature ⟨i>T⟨ i>* in reciprocating cylinderâ€onâ€plate sliding. Polymer Engineering and Science, 2008, 48, 774-785.	1.5	21
115	The lubricity of graphite flake inclusions in sintered polyimides affected by chemical reactions at high temperatures. Carbon, 2008, 46, 1072-1084.	5. 4	29
116	The sliding behaviour of sintered and thermoplastic polyimides investigated by thermal and Raman spectroscopic measurements. Wear, 2008, 264, 869-876.	1.5	22
117	The effect of processing method on dry sliding performance of polyimides at high load/high velocity conditions. European Polymer Journal, 2008, 44, 716-732.	2.6	9
118	On the efficiency of internal lubricants for polymers under different sliding conditions. Journal of Vinyl and Additive Technology, 2008, 14, 126-135.	1.8	4
119	Design of a tribotester for evaluation of polymer components under static and dynamic sliding conditions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221, 661-674.	1.0	6
120	Atomic Force Microscopy of Sintered and Thermoplastic Polyimide Surfaces after Macroscopic Wear Tests. Materials Science Forum, 2007, 561-565, 2469-2472.	0.3	0
121	Online Wear Monitoring of Polymer Matrix Composites. Materials Science Forum, 2007, 561-565, 635-638.	0.3	1
122	Frictional Behavior of Glass Fiber Reinforced Polyester under Different Loads. Materials Science Forum, 2007, 561-565, 639-642.	0.3	0
123	Acoustic Emission as Analyzing Tool for Wear Mechanisms of Composite Materials. Materials Science Forum, 2007, 561-565, 2193-2196.	0.3	0
124	A Combination of Mathematical Morphology and Thermal Analysis of Wear Debris Explaining Polymer Sliding Mechanisms. Materials Science Forum, 2007, 561-565, 2237-2240.	0.3	1
125	A Relation between Laboratory and Full-Scale Testing of Polyester/Polyester Composites under Static and Dynamic Load. Materials Science Forum, 2007, 561-565, 725-728.	0.3	0
126	Friction and Wear Mechanisms of Sintered and Thermoplastic Polyimides under Adhesive Sliding. Macromolecular Materials and Engineering, 2007, 292, 523-556.	1.7	57

#	Article	IF	CITATIONS
127	Friction, wear and transfer of pure and internally lubricated cast polyamides at various testing scales. Wear, 2007, 262, 1433-1449.	1.5	54
128	Wear transitions and stability of polyoxymethylene homopolymer in highly loaded applications compared to small-scale testing. Tribology International, 2007, 40, 819-833.	3.0	28
129	Fast characterization of carbon/epoxy rings for use in the ball-joints of the Maeslant storm surge barrier. Composite Structures, 2007, 78, 359-367.	3.1	1
130	Effect of test scale on the friction properties of pure and internal-lubricated cast polyamides at running-in. Polymer Testing, 2007, 26, 660-675.	2.3	21
131	Characterization of composites for use in the ballâ€joints of the Maeslant storm surge barrier. Polymer Composites, 2007, 28, 470-478.	2.3	4
132	Thermal and spectroscopic analysis of worn polyoxymethylene surfaces and wear debris explaining degradation and polymerisation mechanisms. Journal of Polymer Research, 2007, 14, 411-422.	1.2	12
133	Global analysis and constructional aspects in the redesign of bearing elements for a movable storm surge barrier. Engineering Structures, 2007, 29, 2673-2691.	2.6	4
134	Full-scale analysis of deformation and stress distribution for constrained composite bearing elements under compressive yielding conditions. Materials & Design, 2007, 28, 2450-2470.	5.1	4
135	Friction induced conformational changes on large-scale and small-scale polyester sliding surfaces. Surface and Interface Analysis, 2006, 38, 868-872.	0.8	6
136	Wear behavior of carbon fiber-reinforced poly(phenylene sulfide). Polymer Composites, 2006, 27, 92-98.	2.3	23
137	Softening and melting mechanisms of polyamides interfering with sliding stability under adhesive conditions. Polymer, 2006, 47, 5050-5065.	1.8	29
138	Deformation of reinforced polymer bearing elements on full-scale compressive strength and creep tests under yielding conditions. Polymer Testing, 2006, 25, 230-245.	2.3	7
139	Large-scale tests on friction and wear of engineering polymers for material selection in highly loaded sliding systems. Materials & Design, 2006, 27, 535-555.	5.1	26
140	On the SEM features of glass–polyester composite system subjected to dry sliding wear. Wear, 2006, 261, 703-714.	1.5	41
141	Large-scale friction and wear tests on a hybrid UHMWPE-pad/primer coating combination used as bearing element in an extremely high-loaded ball-joint. Tribology International, 2006, 39, 796-811.	3.0	19
142	Friction, wear and material transfer of sintered polyimides sliding against various steel and diamond-like carbon coated surfaces. Tribology International, 2006, 39, 575-589.	3.0	28
143	Postmortem Raman Spectroscopy Explaining Friction and Wear Behavior of Sintered Polyimide at High Temperature. Journal of Materials Engineering and Performance, 2006, 15, 750-757.	1.2	23
144	Tribophysical phenomena on sliding surfaces of polyester composites evaluated by spectroscopic and thermal analysis. Tribology Letters, 2006, 24, 229-235.	1.2	3

#	Article	IF	CITATIONS
145	Fracture Assessment of Carbon Fibre/Epoxy Reinforcing Rings through a Combination of Full-Scale Testing, Small-Scale Testing and Stress Modeling. Applied Composite Materials, 2006, 13, 57-85.	1.3	8
146	Thermal transitions in polyimide transfer under sliding against steel, investigated by Raman spectroscopy and thermal analysis. Journal of Applied Polymer Science, 2006, 101, 1407-1425.	1.3	18
147	Large-Scale Evaluation of Constrained Bearing Elements Made of Thermosetting Polyester Resin and Polyester Fabric Reinforcement. Journal of Tribology, 2006, 128, 681-696.	1.0	5
148	Influence of Re-adhesion on the Wear and Friction of Glass Fibre–Reinforced Polyester Composites. Journal of Adhesion, 2006, 82, 1033-1060.	1.8	6
149	Large-scale specimen testing on friction and wear of pure and internally lubricated cast polyamides. TriboTest Journal: Tribology and Lubrication in Practice, 2006, 12, 237-256.	0.7	3
150	Sliding behaviour of pure polyester and polyester-PTFE filled bulk composites in overload conditions. Polymer Testing, 2005, 24, 588-603.	2.3	50
151	Friction and wear of acetal: A matter of scale. Wear, 2005, 259, 697-702.	1.5	24
152	Friction of polyoxymethylene homopolymer in highly loaded applications extrapolated from small-scale testing. Tribology Letters, 2005, 19, 177-189.	1.2	24
153	Determination of Friction and Wear of Engineering Polymers by Means of Large-Scale Specimen Testing. Materials Science Forum, 2005, 475-479, 1077-1082.	0.3	2
154	Characterisation of polyimides under high-temperature sliding. Materials Letters, 2005, 59, 2850-2857.	1.3	17
155	Orientation and Degradation of Polymer Sliding Surfaces Evaluated by Raman Spectroscopy., 2005,,.		1
156	Friction and Thermal Effects of Engineering Plastics Sliding Against Steel and DLN-Coated Counterfaces. Tribology Letters, 2004, 17, 269-288.	1.2	14
157	Shrinkage behavior after the heat setting of biaxially stretched poly(ethylene 2,6-naphthalate) films and bottles. Journal of Applied Polymer Science, 2003, 87, 1462-1473.	1.3	9
158	The tribological behaviour of engineering plastics during sliding friction investigated with small-scale specimens. Wear, 2002, 253, 673-688.	1.5	99
159	Natural Rubber Composites for Paper Coating Applications. , 0, , .		5
160	Atomic Force Microscopy of Sintered and Thermoplastic Polyimide Surfaces after Macroscopic Wear Tests. Materials Science Forum, 0, , 2469-2472.	0.3	1