
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/343923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of human brain tumour initiating cells. Nature, 2004, 432, 396-401.	27.8	6,758
2	Identification of a cancer stem cell in human brain tumors. Cancer Research, 2003, 63, 5821-8.	0.9	3,675
3	High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell, 2015, 163, 1515-1526.	28.9	1,339
4	Cancer stem cells: an evolving concept. Nature Reviews Cancer, 2012, 12, 133-143.	28.4	1,055
5	Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens. Cell Stem Cell, 2009, 4, 568-580.	11.1	881
6	Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2017, 31, 737-754.e6.	16.8	836
7	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	27.8	761
8	Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nature Reviews Drug Discovery, 2009, 8, 806-823.	46.4	755
9	Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency. Journal of Clinical Oncology, 2016, 34, 2206-2211.	1.6	692
10	Cancer stem cells in nervous system tumors. Oncogene, 2004, 23, 7267-7273.	5.9	670
11	Comprehensive Analysis of Hypermutation in Human Cancer. Cell, 2017, 171, 1042-1056.e10.	28.9	596
12	Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 851-856.	7.1	321
13	Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature, 2017, 549, 227-232.	27.8	321
14	Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nature Genetics, 2015, 47, 257-262.	21.4	306
15	Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature, 2019, 572, 67-73.	27.8	293
16	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncology, The, 2016, 17, 484-495.	10.7	274
17	The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathologica, 2017, 133, 5-12.	7.7	271
18	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	27.8	266

#	Article	IF	CITATIONS
19	<i>BRAF</i> Mutation and <i>CDKN2A</i> Deletion Define a Clinically Distinct Subgroup of Childhood Secondary High-Grade Glioma. Journal of Clinical Oncology, 2015, 33, 1015-1022.	1.6	244
20	Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas. Cancer Cell, 2020, 37, 569-583.e5.	16.8	244
21	Quiescent Sox2+ Cells Drive Hierarchical Growth and Relapse in Sonic Hedgehog Subgroup Medulloblastoma. Cancer Cell, 2014, 26, 33-47.	16.8	241
22	A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron, 2018, 100, 799-815.e7.	8.1	241
23	Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. Journal of Clinical Oncology, 2017, 35, 2934-2941.	1.6	232
24	Frequent Amplification of a chr19q13.41 MicroRNA Polycistron in Aggressive Primitive Neuroectodermal Brain Tumors. Cancer Cell, 2009, 16, 533-546.	16.8	207
25	Functional Enhancers Shape Extrachromosomal Oncogene Amplifications. Cell, 2019, 179, 1330-1341.e13.	28.9	206
26	Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell, 2016, 30, 891-908.	16.8	191
27	Roadmap for the Emerging Field of Cancer Neuroscience. Cell, 2020, 181, 219-222.	28.9	182
28	Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature, 2018, 553, 101-105.	27.8	170
29	Inhibition of Dopamine Receptor D4 Impedes Autophagic Flux, Proliferation, and Survival of Glioblastoma Stem Cells. Cancer Cell, 2016, 29, 859-873.	16.8	169
30	Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nature Genetics, 2014, 46, 39-44.	21.4	167
31	Multipotent CD15+ Cancer Stem Cells in <i>Patched-1</i> –Deficient Mouse Medulloblastoma. Cancer Research, 2009, 69, 4682-4690.	0.9	166
32	Brain Tumor Stem Cells: Bringing Order to the Chaos of Brain Cancer. Journal of Clinical Oncology, 2008, 26, 2916-2924.	1.6	164
33	Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. Journal of Clinical Oncology, 2016, 34, 2468-2477.	1.6	160
34	Chemical genetics reveals a complex functional ground state of neural stem cells. Nature Chemical Biology, 2007, 3, 268-273.	8.0	153
35	ASCL1 Reorganizes Chromatin to Direct Neuronal Fate and Suppress Tumorigenicity of Glioblastoma Stem Cells. Cell Stem Cell, 2017, 21, 209-224.e7.	11.1	150
36	Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. Lancet Oncology, The, 2015, 16, 569-582.	10.7	147

#	Article	IF	CITATIONS
37	Gradient of Developmental and Injury Response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity. Nature Cancer, 2021, 2, 157-173.	13.2	147
38	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	7.7	146
39	Pervasive H3K27 Acetylation Leads to ERV Expression and a Therapeutic Vulnerability in H3K27M Gliomas. Cancer Cell, 2019, 35, 782-797.e8.	16.8	143
40	Genome-Wide CRISPR-Cas9 Screens Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in Glioblastoma Stem Cells. Cell Reports, 2019, 27, 971-986.e9.	6.4	139
41	Cancer Stem Cells: At the Headwaters of Tumor Development. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 175-189.	22.4	136
42	Stalled developmental programs at the root of pediatric brain tumors. Nature Genetics, 2019, 51, 1702-1713.	21.4	136
43	DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. Journal of Clinical Investigation, 2018, 129, 223-229.	8.2	130
44	GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer. Nature Communications, 2020, 11, 4205.	12.8	130
45	Brain tumor stem cells: The cancer stem cell hypothesis writ large. Molecular Oncology, 2010, 4, 420-430.	4.6	127
46	Activity of the Retinoblastoma Family Proteins, pRB, p107, and p130, during Cellular Proliferation and Differentiation. Critical Reviews in Biochemistry and Molecular Biology, 1996, 31, 237-271.	5.2	117
47	Suprateutorial primitive neuroectodermal tumors in children. Journal of Neuro-Oncology, 1996, 29, 75-84.	2.9	114
48	Spatial heterogeneity in medulloblastoma. Nature Genetics, 2017, 49, 780-788.	21.4	112
49	MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. Cancer Cell, 2015, 28, 715-729.	16.8	90
50	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell, 2018, 172, 1050-1062.e14.	28.9	85
51	Coâ€expression of nestin and vimentin intermediate filaments in invasive human astrocytoma cells. International Journal of Developmental Neuroscience, 1999, 17, 503-515.	1.6	79
52	Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell, 2020, 181, 1329-1345.e24.	28.9	79
53	A Tumorigenic MLL-Homeobox Network in Human Glioblastoma Stem Cells. Cancer Research, 2013, 73, 417-427.	0.9	77
54	PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nature Communications, 2021, 12, 979.	12.8	77

#	Article	IF	CITATIONS
55	The INK4A/ARF locus: role in cell cycle control and apoptosis and implications for glioma growth. Journal of Neuro-Oncology, 2001, 51, 219-229.	2.9	74
56	Wnt and Notch signaling govern self-renewal and differentiation in a subset of human glioblastoma stem cells. Genes and Development, 2019, 33, 498-510.	5.9	74
57	A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell, 2019, 36, 51-67.e7.	16.8	69
58	Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 139-152.	4.0	67
59	Cell Surface Profiling Using High-Throughput Flow Cytometry: A Platform for Biomarker Discovery and Analysis of Cellular Heterogeneity. PLoS ONE, 2014, 9, e105602.	2.5	65
60	Outcomes of BRAF V600E Pediatric Gliomas Treated With Targeted BRAF Inhibition. JCO Precision Oncology, 2020, 4, 561-571.	3.0	62
61	Retinoic acid and the cyclin dependent kinase inhibitors synergistically alter proliferation and morphology of U343 astrocytoma cells. Oncogene, 1997, 15, 2037-2048.	5.9	61
62	Pediatric awake craniotomy and intra-operative stimulation mapping. Journal of Clinical Neuroscience, 2014, 21, 1891-1894.	1.5	60
63	Separating Stem Cells by Flow Cytometry: Reducing Variability for Solid Tissues. Cell Stem Cell, 2009, 5, 579-583.	11.1	58
64	Verotoxins inhibit the growth of and induce apoptosis in human astrocytoma cells. Journal of Neuro-Oncology, 1998, 40, 137-150.	2.9	56
65	Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell, 2019, 25, 433-446.e7.	11.1	56
66	ATM Regulates 3-Methylpurine-DNA Glycosylase and Promotes Therapeutic Resistance to Alkylating Agents. Cancer Discovery, 2014, 4, 1198-1213.	9.4	55
67	Poly-ADP-Ribose Polymerase as a Therapeutic Target in Pediatric Diffuse Intrinsic Pontine Glioma and Pediatric High-Grade Astrocytoma. Molecular Cancer Therapeutics, 2015, 14, 2560-2568.	4.1	55
68	Breath-Hold Blood Oxygen Level–Dependent MRI: A Tool for the Assessment of Cerebrovascular Reserve in Children with Moyamoya Disease. American Journal of Neuroradiology, 2018, 39, 1717-1723.	2.4	55
69	Brain Tumor Stem Cells Remain in Play. Journal of Clinical Oncology, 2017, 35, 2428-2431.	1.6	54
70	Brain Tumor Stem Cells: Identification and Concepts. Neurosurgery Clinics of North America, 2007, 18, 31-38.	1.7	53
71	Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nature Medicine, 2022, 28, 125-135.	30.7	53
72	High-resolution structural genomics reveals new therapeutic vulnerabilities in glioblastoma. Genome Research, 2019, 29, 1211-1222.	5.5	52

#	Article	IF	CITATIONS
73	Invitation to a second round. Nature, 2010, 466, 40-41.	27.8	49
74	Survival and functional outcomes of molecularly defined childhood posterior fossa ependymoma: Cure at a cost. Cancer, 2019, 125, 1867-1876.	4.1	49
75	The transcriptional landscape of Shh medulloblastoma. Nature Communications, 2021, 12, 1749.	12.8	47
76	The E2F-family proteins induce distinct cell cycle regulatory factors in p16-arrested, U343 astrocytoma cells. Oncogene, 1998, 17, 867-876.	5.9	46
77	Preclinical target validation using patient-derived cells. Nature Reviews Drug Discovery, 2015, 14, 149-150.	46.4	46
78	Single-cell chromatin accessibility profiling of glioblastoma identifies an invasive cancer stem cell population associated with lower survival. ELife, 2021, 10, .	6.0	45
79	Glioma migration: clues from the biology of neural progenitor cells and embryonic CNS cell migration. , 2001, 53, 203-212.		42
80	ID1 Is Critical for Tumorigenesis and Regulates Chemoresistance in Glioblastoma. Cancer Research, 2019, 79, 4057-4071.	0.9	39
81	Dual Regulatory Functions of SUFU and Targetome of GLI2 in SHH Subgroup Medulloblastoma. Developmental Cell, 2019, 48, 167-183.e5.	7.0	39
82	Clinical impact of combined epigenetic and molecular analysis of pediatric low-grade gliomas. Neuro-Oncology, 2020, 22, 1474-1483.	1.2	39
83	The white matter is a pro-differentiative niche for glioblastoma. Nature Communications, 2021, 12, 2184.	12.8	37
84	Medulloblastoma Arises from the Persistence of a Rare and Transient Sox2+ Granule Neuron Precursor. Cell Reports, 2020, 31, 107511.	6.4	35
85	Cyclin and Cyclin-Dependent Kinase Expression in Human Astrocytoma Cell Lines. Journal of Neuropathology and Experimental Neurology, 1997, 56, 291-300.	1.7	34
86	Craniospinal irradiation as part of re-irradiation for children with recurrent intracranial ependymoma. Neuro-Oncology, 2019, 21, 547-557.	1.2	32
87	Management and outcome of chordomas in the pediatric population: The Hospital for Sick Children experience and review of the literature. Journal of Clinical Neuroscience, 2016, 34, 169-176.	1.5	29
88	New drugs for brain tumors? Insights from chemical probing of neural stem cells. Medical Hypotheses, 2009, 72, 683-687.	1.5	28
89	Patterns of Cerebral Ischemia in Children With Moyamoya. Pediatric Neurology, 2015, 52, 65-72.	2.1	28
90	Intratumoral Genetic and Functional Heterogeneity in Pediatric Glioblastoma. Cancer Research, 2019, 79, 2111-2123.	0.9	28

6

#	Article	IF	CITATIONS
91	Gastrointestinal transcription factors drive lineage-specific developmental programs in organ specification and cancer. Science Advances, 2019, 5, eaax8898.	10.3	26
92	Factors Contributing to Major Neurological Complications From Vein of Galen Malformation Embolization. JAMA Neurology, 2020, 77, 992.	9.0	26
93	Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma. Oncotarget, 2015, 6, 21718-21729.	1.8	26
94	Selective Calcium Sensitivity in Immature Glioma Cancer Stem Cells. PLoS ONE, 2014, 9, e115698.	2.5	23
95	Bmi1 and Cell of Origin Determinants of Brain Tumor Phenotype. Cancer Cell, 2007, 12, 295-297.	16.8	22
96	Brain Cancer Stem Cells: A Level Playing Field. Cell Stem Cell, 2009, 5, 468-469.	11.1	20
97	MicroRNAs and Parallel Stem Cell Lives. Cell, 2009, 138, 423-424.	28.9	18
98	Distinct Clinical and Radiographic Phenotypes in Pediatric Patients With Moyamoya. Pediatric Neurology, 2021, 120, 18-26.	2.1	18
99	Brain tumor stem cells. Biology of Blood and Marrow Transplantation, 2005, 11, 12-13.	2.0	16
100	Association Between Prolonged Seizures and Malignant Middle Cerebral Artery Infarction in Children With Acute Ischemic Stroke. Pediatric Neurology, 2016, 64, 44-51.	2.1	16
101	Expression of stromelysin 1 in human astrocytoma cell lines. Journal of Neuro-Oncology, 1996, 30, 181-8.	2.9	15
102	Cip/Kip cell-cycle inhibitors: a neuro-oncological perspective. Journal of Neuro-Oncology, 2001, 51, 205-218.	2.9	15
103	THE HISTORY OF NEUROSURGERY AT THE HOSPITAL FOR SICK CHILDREN IN TORONTO. Neurosurgery, 2007, 61, 612-625.	1.1	15
104	Norrin mediates tumor-promoting and -suppressive effects in glioblastoma via Notch and Wnt. Journal of Clinical Investigation, 2020, 130, 3069-3086.	8.2	15
105	Treatment Strategies and Related Outcomes for Brain Arteriovenous Malformations in Children: A Systematic Review and Meta-Analysis. American Journal of Roentgenology, 2020, 215, 472-487.	2.2	14
106	Pan-cancer analysis of non-coding transcripts reveals the prognostic onco-lncRNA HOXA10-AS in gliomas. Cell Reports, 2021, 37, 109873.	6.4	13
107	Predicting Ischemic Risk Using Blood Oxygen Level–Dependent MRI in Children with Moyamoya. American Journal of Neuroradiology, 2020, 41, 160-166.	2.4	12
108	Cancer's source in the peripheral nervous system. Nature Medicine, 2008, 14, 373-375.	30.7	10

#	Article	IF	CITATIONS
109	Trametinib Toxicities in Patients With Low-grade Gliomas and Diabetes Insipidus: Related Findings?. Journal of Pediatric Hematology/Oncology, 2020, 42, e248-e250.	0.6	10
110	Single-cell chromatin profiling of the primitive gut tube reveals regulatory dynamics underlying lineage fate decisions. Nature Communications, 2022, 13, .	12.8	10
111	Diffuse intrinsic pontine glioma ventricular peritoneal shunt metastasis: a case report and literature review. Child's Nervous System, 2019, 35, 861-864.	1.1	9
112	The DEAD-box helicase DDX56 is a conserved stemness regulator in normal and cancer stem cells. Cell Reports, 2021, 34, 108903.	6.4	9
113	Translating Basic Science Discoveries into Improved Outcomes for Glioblastoma. Clinical Cancer Research, 2020, 26, 2457-2460.	7.0	8
114	Deep venous communication in vein of Galen malformations: incidence, Imaging, and Implications for treatment. Journal of NeuroInterventional Surgery, 2021, 13, 290-293.	3.3	8
115	Unruptured intracranial aneurysms in children: 18 years' experience in a tertiary care pediatric institution. Journal of Neurosurgery: Pediatrics, 2019, 24, 184-189.	1.3	8
116	Paediatric atypical choroid plexus papilloma: is adjuvant therapy necessary?. Journal of Neuro-Oncology, 2021, 155, 63-70.	2.9	6
117	Improving long-term outcomes in pediatric torcular dural sinus malformations with embolization and anticoagulation: a retrospective review of The Hospital for Sick Children experience. Journal of Neurosurgery: Pediatrics, 2021, 28, 469-475.	1.3	6
118	Re-evaluating surgery and re-irradiation for locally recurrent pediatric ependymoma – a multi-institutional study. Neuro-Oncology Advances, 2021, 3, vdab158.	0.7	5
119	Is jugular bulb stenosis in vein of Galen aneurysmal malformation associated with bony remodeling of the jugular foramina?. Journal of Neurosurgery: Pediatrics, 2016, 18, 92-96.	1.3	4
120	Intracranial artery to artery spontaneous revascularization in a child. Child's Nervous System, 2017, 33, 2035-2038.	1.1	4
121	Locations, associations and temporal evolution of intracranial arterial infundibular dilatations in children. Journal of NeuroInterventional Surgery, 2020, 12, 495-498.	3.3	4
122	Fractional Flow on TOF-MRA as a Measure of Stroke Risk in Children with Intracranial Arterial Stenosis. American Journal of Neuroradiology, 2020, 41, 535-541.	2.4	4
123	Building the ecosystem for pediatric neuroâ€oncology care in Pakistan: Results of a 7â€year long twinning program between Canada and Pakistan. Pediatric Blood and Cancer, 2022, 69, e29726.	1.5	4
124	Global chromatin architecture defines functional cancer hierarchies. Cell Cycle, 2016, 15, 2093-2094.	2.6	3
125	Delayed Chronic Subdural Hematoma after Total Cranial Vault Reconstruction for Sagittal Synostosis. Pediatric Neurosurgery, 2018, 53, 200-204.	0.7	3
126	Clinical and Angioarchitectural Features of Hemorrhagic Brain Arterio-Venous Malformations in Adults and Children: Contrasts and Implications on Outcome. Neurosurgery, 2021, 89, 645-652.	1.1	3

#	Article	IF	CITATIONS
127	Fronto-Parietal and White Matter Haemodynamics Predict Cognitive Outcome in Children with Moyamoya Independent of Stroke. Translational Stroke Research, 2022, 13, 757-773.	4.2	3
128	Long Vascular Sheaths for Transfemoral Neuroendovascular Procedures in Children. Neurointervention, 2021, 16, 149-157.	0.8	2
129	Neurovascular Manifestations in Pediatric Patients With Hereditary Haemorrhagic Telangiectasia. Pediatric Neurology, 2022, 129, 24-30.	2.1	2
130	Successful management of symptomatic hydrocephalus using a temporary external ventricular drain with or without endoscopic third ventriculostomy in pediatric patients with germinoma. Journal of Neurosurgery, 2021, , 1-6.	1.6	2
131	GCT-22. OUTCOMES OF CHILDREN WITH LOCALIZED AND METASTATIC GERMINOMA TREATED WITH CHEMOTHERAPY FOLLOWED BY RADIATION THERAPY WITHOUT PRIMARY TUMOR BOOST. Neuro-Oncology, 2022, 24, i59-i59.	1.2	2
132	Making a commitment: neurons refuse cancer's advances. Nature Neuroscience, 2019, 22, 507-508.	14.8	1
133	Three-Dimensional Computed Tomography Reconstruction Unmasks Shunt Disconnection in a Child. Canadian Journal of Neurological Sciences, 2020, 47, 826-827.	0.5	1
134	Surgical management of pediatric rolandic arteriovenous malformations: a single-center case series. Journal of Neurosurgery: Pediatrics, 2021, 27, 62-68.	1.3	1
135	IMMU-18. FAVORABLE OUTCOME IN REPLICATION REPAIR DEFICIENT HYPERMUTANT BRAIN TUMORS TO IMMUNE CHECKPOINT INHIBITION: AN INTERNATIONAL RRD CONSORTIUM REGISTRY STUDY. Neuro-Oncology, 2020, 22, iii363-iii363.	1.2	1
136	Current Concepts in Neuro-Oncology: The Cell Cycle-A Review. Neurosurgery, 1997, , .	1.1	0
137	LG-66CLINICAL AND TREATMENT FACTORS DETERMINING LONG-TERM OUTCOMES FOR ADULT SURVIVORS OF CHILDHOOD LOW-GRADE GLIOMA: A POPULATION-BASED STUDY. Neuro-Oncology, 2016, 18, iii94.1-iii94.	1.2	0
138	LGG-10. EPIGENETIC/GENETIC/MORPHOLOGIC ANALYSES REVEAL CLINICAL/PROGNOSTIC INSIGHT OF PEDIATRIC LOW GRADE GLIOMAS. Neuro-Oncology, 2018, 20, i106-i106.	1.2	0
139	HGG-17. TUMOR MUTATIONAL BURDEN ANALYSIS OF PEDIATRIC TUMORS PROVIDES A DIAGNOSTIC TOOL FOR GERMLINE REPLICATION REPAIR DEFICIENCY AND PREDICT RESPONSE TO IMMUNE CHECKPOINT INHIBITION. Neuro-Oncology, 2018, 20, i92-i92.	1.2	0
140	LGG-59. REMARKABLE OBJECTIVE RESPONSE AND FAVORABLE SURVIVAL FOR BRAF-V600E CHILDHOOD LOW-GRADE GLIOMAS TO BRAF INHIBITORS COMPARED CONVENTIONAL CHEMOTHERAPY. Neuro-Oncology, 2018, 20, i117-i117.	1.2	0
141	IMMU-20. IMMUNE AND TUMOR BIOMARKERS OF OUTCOME IN REPLICATION REPAIR DEFICIENT BRAIN TUMORS TREATED WITH IMMUNE CHECKPOINT INHIBITORS: UPDATES FROM THE INTERNATIONAL REPLICATION REPAIR DEFICIENCY CONSORTIUM. Neuro-Oncology, 2019, 21, ii96-ii97.	1.2	0
142	PDCT-08. SUPERIOR OUTCOME FOR BRAF V600E PEDIATRIC GLIOMAS TREATED WITH TARGETED BRAF INHIBITION. Neuro-Oncology, 2019, 21, vi184-vi185.	1.2	0
143	LGG-16. PREDICTORS OF OUTCOME IN BRAF-V600E PEDIATRIC GLIOMAS TREATED WITH BRAF INHIBITORS: A REPORT FROM THE PLGG TASKFORCE. Neuro-Oncology, 2019, 21, ii102-ii102.	1.2	0
144	ETMR-22. TITLE: DEFINING THE CLINICAL AND PROGNOSTIC LANDSCAPE OF EMBRYONAL TUMORS WITH MULTI-LAYERED ROSETTES (ETMRs), A RARE BRAIN TUMOR REGISTRY (RBTC) STUDY. Neuro-Oncology, 2020, 22, iii327-iii328.	1.2	0

#	Article	IF	CITATIONS
145	Pediatric multicompartmental trigeminal schwannoma: illustrative case. Journal of Neurosurgery Case Lessons, 2021, 1, .	0.3	0
146	Cerebral Sinovenous Thrombosis Post Head Injury - 10 Year Experience in Children Blood, 2005, 106, 4132-4132.	1.4	0
147	Molecular alterations to predict survival and response to chemotherapy of pediatric low-grade glioma Journal of Clinical Oncology, 2017, 35, 10503-10503.	1.6	0
148	The Functional Genomic Circuitry of Human Glioblastoma Stem Cells. SSRN Electronic Journal, 0, , .	0.4	0
149	RARE-09. PRESERVATION OF ENDOCRINE FUNCTION AFTER OMMAYA RESERVOIR INSERTION IN CHILDREN WITH CYSTIC CRANIOPHARYNGIOMA. Neuro-Oncology, 2020, 22, iii443-iii443.	1.2	0
150	LGG-55. OUTCOME OF BRAF V600E PEDIATRIC GLIOMAS TREATED WITH TARGETED BRAF INHIBITION. Neuro-Oncology, 2020, 22, iii377-iii377.	1.2	0
151	EPCO-22. INHERITED POLYMORPHISM IN CHROMOSOME 8Q24 COOPERATES WITH MUTANT IDH1, Trp53 AND ATRX LOSS TO INDUCE LOW-GRADE GLIOMA. Neuro-Oncology, 2021, 23, vi6-vi6.	1.2	0
152	STEM-26. BLOOD-TUMOR BARRIER IS COMPOSED OF MECHANOSENSING TUMOR CELLS THAT MASK THERAPEUTIC VULNERABILITY. Neuro-Oncology, 2021, 23, vi26-vi26.	1.2	0
153	TMOD-18. DIRECT IN VIVO CRISPR SCREEN IDENTIFIES COOPERATING TUMOR SUPPRESSORS THAT DRIVE PROGRESSION OF IDH1-MUTANT LOW-GRADE GLIOMA TO AGGRESSIVE GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi219-vi219.	1.2	0
154	STEM-29. THE HISTONE VARIANT macroH2A2 ORCHESTRATES AN ACTIONABLE CHROMATIN PROGRAM OF STEMNESS IN GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii202-ii202.	1.2	0
155	264. A 20-year Study of Intracranial Pyogenic Complications of Sinusitis in Children. Open Forum Infectious Diseases, 2021, 8, S238-S238.	0.9	0
156	LGG-41. The clinical and molecular landscape of gliomas in adolescents and young adults. Neuro-Oncology, 2022, 24, i97-i97.	1.2	0
157	Abstract LB188: Identification of intrinsic molecular vulnerabilities in inherited and treatment-related hypermutant patient-derived glioma cell line models. Cancer Research, 2022, 82, LB188-LB188.	0.9	0