
Giuseppe Locatelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3438949/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathologica, 2022, 143, 179-224.	3.9	82
2	CNS Antigen-Specific Neuroinflammation Attenuates Ischemic Stroke With Involvement of Polarized Myeloid Cells. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	3
3	Autoimmune neuroinflammation triggers mitochondrial oxidation in oligodendrocytes. Glia, 2022, 70, 2045-2061.	2.5	16
4	Semaphorin 7A restricts serotonergic innervation and ensures recovery after spinal cord injury. Cellular and Molecular Life Sciences, 2021, 78, 2911-2927.	2.4	11
5	Beyond Trial and Error: A Systematic Development of Liposomes Targeting Primary Macrophages. Advanced NanoBiomed Research, 2021, 1, 2000098.	1.7	4
6	Central Nervous System Barriers Impact Distribution and Expression of iNOS and Arginase-1 in Infiltrating Macrophages During Neuroinflammation. Frontiers in Immunology, 2021, 12, 666961.	2.2	12
7	Microglia Get a Little Help from "Th―eir Friends. Immunity, 2020, 53, 484-486.	6.6	3
8	Dwellers and Trespassers: Mononuclear Phagocytes at the Borders of the Central Nervous System. Frontiers in Immunology, 2020, 11, 609921.	2.2	26
9	Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science, 2019, 363, .	6.0	583
10	Recent developments of câ€Met as a therapeutic target in hepatocellular carcinoma. Hepatology, 2018, 67, 1132-1149.	3.6	190
11	Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nature Neuroscience, 2018, 21, 1196-1208.	7.1	132
12	Does c-Met remain a rational target for therapy in patients with EGFR TKI-resistant non-small cell lung cancer?. Cancer Treatment Reviews, 2017, 61, 70-81.	3.4	62
13	Mouse redox histology using genetically encoded probes. Science Signaling, 2016, 9, rs1.	1.6	62
14	Origin, fate and dynamics of macrophages at central nervous system interfaces. Nature Immunology, 2016, 17, 797-805.	7.0	872
15	Deletion of Jun Proteins in Adult Oligodendrocytes Does Not Perturb Cell Survival, or Myelin Maintenance In Vivo. PLoS ONE, 2015, 10, e0120454.	1.1	1
16	Mature oligodendrocytes actively increase in vivo cytoskeletal plasticity following CNS damage. Journal of Neuroinflammation, 2015, 12, 62.	3.1	7
17	Imaging generation and action of reactive species in an animal model of multiple sclerosis: Focus on axonal pathology. Journal of Neuroimmunology, 2014, 275, 126.	1.1	0
18	Plasticity of mononuclear phagocytes in an animal model of Multiple Sclerosis. Journal of Neuroimmunology, 2014, 275, 176.	1.1	0

GIUSEPPE LOCATELLI

#	Article	IF	CITATIONS
19	Loss of IGF1R from oligodendrocytes ameliorates neuroinflammation without affecting cell survival. Journal of Neuroimmunology, 2014, 275, 123.	1.1	0
20	Plastic response of mature oligodendrocytes following CNS damage. Journal of Neuroimmunology, 2014, 275, 186.	1.1	0
21	Primary oligodendrocyte death does not elicit anti-CNS immunity. Nature Neuroscience, 2012, 15, 543-550.	7.1	121
22	The death domain protein p84N5, but not the short isoform p84N5s, is cell cycle-regulated and shuttles between the nucleus and the cytoplasm. FEBS Letters, 2004, 574, 13-19.	1.3	11
23	Corrigendum to: The death domain protein p84N5, but not the short isoform p84N5s, is cell cycle-regulated and shuttles between the nucleus and the cytoplasm (FEBS 28723) [FEBS Letters 574 (2004) 13-19]. FEBS Letters, 2004, 576, 498-498.	1.3	0