Cyril Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3438748/publications.pdf

Version: 2024-02-01

	279798	276875
1,806	23	41
citations	h-index	g-index
		1741
58	58	1741
docs citations	times ranked	citing authors
	1,806 citations 58 docs citations	1,806 23 citations h-index 58 58

#	Article	IF	CITATIONS
1	Checklist on the Quality of the Repetitive Peripheral Magnetic Stimulation (rPMS) Methods in Research: An International Delphi Study. Frontiers in Neurology, 2022, 13, 852848.	2.4	10
2	Noninvasive stimulation of the unlesioned hemisphere and phonological treatment in a case of chronic anomia post-stroke. Neurocase, 2022, , 1-12.	0.6	0
3	Repetitive peripheral magnetic stimulation to improve ankle function and gait in cerebral palsy at adulthood: An open-label case study. Brain Research, 2022, 1792, 147999.	2.2	O
4	Complex Regional Pain Syndrome. A Comprehensive Review on Neuroplastic Changes Supporting the Use of Non-invasive Neurostimulation in Clinical Settings. Frontiers in Pain Research, 2021, 2, 732343.	2.0	6
5	Theta-Burst Stimulation of Forearm Muscles in Patients With Complex Regional Pain Syndrome: Influence on Brain and Clinical Outcomes. Frontiers in Pain Research, 2021, 2, 736806.	2.0	3
6	A new method to elicit and measure movement illusions in stroke by means of muscle tendon vibration: the Standardized Kinesthetic Illusion Procedure (SKIP). Somatosensory & Motor Research, 2020, 37, 28-36.	0.9	8
7	Reply to the comment on: "Reporting matters: Brain mapping with transcranial magnetic stimulation― Human Brain Mapping, 2019, 40, 354-355.	3 . 6	2
8	The activation of transversus abdominis muscle during rapid limb movements depends on the anticipation of postural demand rather than on respiratory reflexes. Gait and Posture, 2018, 60, 13-14.	1.4	0
9	Noninvasive neuromodulation for rehabilitation of sensorimotor function and reduction of chronic pain. Neurophysiologie Clinique, 2018, 48, 244.	2.2	O
10	Altered transcallosal inhibition evidenced by transcranial magnetic stimulation highlights neurophysiological consequences of premature birth in early adulthood. Journal of the Neurological Sciences, 2018, 393, 18-23.	0.6	1
11	Repetitive peripheral magnetic neurostimulation of multifidus muscles combined with motor training influences spine motor control and chronic low back pain. Clinical Neurophysiology, 2017, 128, 442-453.	1.5	37
12	Reliability of lower limb transcranial magnetic stimulation outcomes in the ipsi- and contralesional hemispheres of adults with chronic stroke. Clinical Neurophysiology, 2017, 128, 1290-1298.	1.5	18
13	After-effects of peripheral neurostimulation on brain plasticity and ankle function in chronic stroke: The role of afferents recruited. Neurophysiologie Clinique, 2017, 47, 275-291.	2,2	27
14	Reliability and minimal detectable change of transcranial magnetic stimulation outcomes in healthy adults: A systematic review. Brain Stimulation, 2017, 10, 196-213.	1.6	67
15	"Discrete peaks―of excitability and map overlap reveal taskâ€specific organization of primary motor cortex for control of human forearm muscles. Human Brain Mapping, 2017, 38, 6118-6132.	3 . 6	36
16	The side of chronic low back pain matters: evidence from the primary motor cortex excitability and the postural adjustments of multifidi muscles. Experimental Brain Research, 2017, 235, 647-659.	1.5	20
17	A Multi-facetted Visual Analytics Tool for Exploratory Analysis of Human Brain and Function Datasets. Frontiers in Neuroinformatics, 2016, 10, 36.	2.5	16
18	Revisiting the Corticomotor Plasticity in Low Back Pain: Challenges and Perspectives. Healthcare (Switzerland), 2016, 4, 67.	2.0	20

#	Article	IF	Citations
19	Influence of paravertebral muscles training on brain plasticity and postural control in chronic low back pain. Scandinavian Journal of Pain, 2016, 12, 74-83.	1.3	25
20	Intermittent Theta-Burst Stimulation of the Right Dorsolateral Prefrontal Cortex to Promote Metaphor Comprehension in Parkinson Disease: A Case Study. Archives of Physical Medicine and Rehabilitation, 2016, 97, 74-83.	0.9	21
21	Influence of chronic low back pain and fear of movement on the activation of the transversely oriented abdominal muscles during forward bending. Journal of Electromyography and Kinesiology, 2016, 27, 87-94.	1.7	34
22	Corticomotor control of lumbar multifidus muscles is impaired in chronic low back pain: concurrent evidence from ultrasound imaging and double-pulse transcranial magnetic stimulation. Experimental Brain Research, 2016, 234, 1033-1045.	1.5	58
23	Paired-Pulse TMS and Fine-Wire Recordings Reveal Short-Interval Intracortical Inhibition and Facilitation of Deep Multifidus Muscle Fascicles. PLoS ONE, 2016, 11, e0159391.	2.5	14
24	Noninvasive neurostimulation in chronic stroke: a double-blind randomized sham-controlled testing of clinical and corticomotor effects. Topics in Stroke Rehabilitation, 2015, 22, 8-17.	1.9	34
25	Task-specificity of bilateral anticipatory activation of the deep abdominal muscles in healthy and chronic low back pain populations. Gait and Posture, 2015, 41, 440-447.	1.4	39
26	Multifidus voluntary training versus hip extension exercises in chronic low back pain: effects on clinical outcomes and underlying corticomotor function. Physiotherapy, 2015, 101, e960-e961.	0.4	1
27	Repetitive peripheral magnetic stimulation to reduce pain or improve sensorimotor impairments: A literature review on parameters of application and afferents recruitment. Neurophysiologie Clinique, 2015, 45, 223-237.	2.2	76
28	Brain control of volitional ankle tasks in people with chronic stroke and in healthy individuals. Journal of the Neurological Sciences, 2014, 338, 148-155.	0.6	16
29	Mechanical Tendon Vibration Protocol to Evaluate the Integrity of Proprioceptive Integration in Chronic Stroke. Archives of Physical Medicine and Rehabilitation, 2014, 95, e23.	0.9	1
30	Noninvasive and Painless Magnetic Stimulation of Nerves Improved Brain Motor Function and Mobility in a Cerebral Palsy Case. Archives of Physical Medicine and Rehabilitation, 2014, 95, 1984-1990.	0.9	32
31	Effects of repetitive peripheral magnetic stimulation on normal or impaired motor control. A review. Neurophysiologie Clinique, 2013, 43, 251-260.	2.2	7 5
32	Psychometric evidence of spasticity measurement tools in cerebral palsy children and adolescents: A systematic review. Journal of Rehabilitation Medicine, 2013, 45, 14-23.	1.1	35
33	Peripheral Neurostimulation and Specific Motor Training of Deep Abdominal Muscles Improve Posturomotor Control in Chronic Low Back Pain. Clinical Journal of Pain, 2013, 29, 814-823.	1.9	41
34	Cerebral motor function in very prematureâ€atâ€birth adolescents: a brain stimulation exploration of kangaroo mother care effects. Acta Paediatrica, International Journal of Paediatrics, 2012, 101, 1045-1053.	1.5	53
35	Brain motor excitability and visuomotor coordination in 8-year-old children born very preterm. Clinical Neurophysiology, 2012, 123, 1191-1199.	1.5	23
36	Peripheral Magnetic Stimulation to Decrease Spasticity in Cerebral Palsy. Pediatric Neurology, 2012, 47, 345-348.	2.1	28

3

#	Article	IF	Citations
37	Corticomotor control of deep abdominal muscles in chronic low back pain and anticipatory postural adjustments. Experimental Brain Research, 2012, 218, 99-109.	1.5	90
38	Enhancement of episodic memory in young and healthy adults: A paired-pulse TMS study on encoding and retrieval performance. Neuroscience Letters, 2011, 488, 138-142.	2.1	54
39	Prematurity and Morbidity: Could KMC Reverse the Process?. Current Women's Health Reviews, 2011, 7, 254-261.	0.2	2
40	Paired-pulse transcranial magnetic stimulation over the dorsolateral prefrontal cortex interferes with episodic encoding and retrieval for both verbal and non-verbal materials. Brain Research, 2010, 1344, 148-158.	2.2	47
41	The Contribution of the Dorsolateral Prefrontal Cortex in Full and Divided Encoding: A Paired-Pulse Transcranial Magnetic Stimulation Study. Behavioural Neurology, 2010, 23, 107-115.	2.1	6
42	The contribution of the dorsolateral prefrontal cortex in full and divided encoding: a paired-pulse transcranial magnetic stimulation study. Behavioural Neurology, 2010, 23, 107-15.	2.1	4
43	Dynamic influence of wrist flexion and extension on the intracortical inhibition of the first dorsal interosseus muscle during precision grip. Brain Research, 2008, 1195, 77-88.	2.2	19
44	Visuo-motor coordination in 8-year-old children born pre-term before and after 28 weeks of gestation. Developmental Neurorehabilitation, 2008, 11, 215-224.	1.1	13
45	Coordination of pointing and stepping: Do postural phenomena result from the juxtaposition of the dynamics of each task?. Neuroscience Letters, 2007, 425, 63-68.	2.1	10
46	Dynamic changes in corticospinal control of precision grip during wrist movements. Brain Research, 2007, 1164, 32-43.	2.2	18
47	Coordination of rapid stepping with arm pointing: Anticipatory changes and step adaptation. Human Movement Science, 2007, 26, 357-375.	1.4	17
48	Timing of cortical excitability changes during the reaction time of movements superimposed on tonic motor activity. Journal of Applied Physiology, 2004, 97, 2220-2227.	2.5	40
49	Progressive Adaptation of the Soleus H-Reflex With Daily Training at Walking Backward. Journal of Neurophysiology, 2003, 89, 648-656.	1.8	66
50	Neural mechanisms involved in the functional linking of motor cortical points. Experimental Brain Research, 2002, 146, 86-94.	1.5	81
51	Quantitative evidence for multiple widespread representations of individual muscles in the cat motor cortex. Neuroscience Letters, 2001, 310, 183-187.	2.1	22
52	On the Origin of the Soleus H-Reflex Modulation Pattern During Human Walking and Its Task-Dependent Differences. Journal of Neurophysiology, 2000, 83, 2881-2890.	1.8	118
53	Studies on the Corticospinal Control of Human Walking. I. Responses to Focal Transcranial Magnetic Stimulation of the Motor Cortex. Journal of Neurophysiology, 1999, 81, 129-139.	1.8	291
54	Factors influencing the quick onset of stepping following postural perturbation. Journal of Biomechanics, 1999, 32, 795-802.	2.1	20