
Joseph Prescott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/343866/publications.pdf Version: 2024-02-01

LOSEDH PRESCOTT

#	Article	IF	CITATIONS
1	Hematology and Clinical Chemistry Reference Ranges for Laboratory-Bred Natal Multimammate Mice (Mastomys natalensis). Viruses, 2021, 13, 187.	1.5	8
2	Nipah Virus Efficiently Replicates in Human Smooth Muscle Cells without Cytopathic Effect. Cells, 2021, 10, 1319.	1.8	4
3	Therapeutic Efficacy of Human Monoclonal Antibodies against Andes Virus Infection in Syrian Hamsters. Emerging Infectious Diseases, 2021, 27, 2707-2710.	2.0	6
4	Tolerance and Persistence of Ebola Virus in Primary Cells from Mops condylurus, a Potential Ebola Virus Reservoir. Viruses, 2021, 13, 2186.	1.5	6
5	Inoculation route-dependent Lassa virus dissemination and shedding dynamics in the natural reservoir – <i>Mastomys natalensis</i> . Emerging Microbes and Infections, 2021, 10, 2313-2325.	3.0	8
6	The Utility of Human Immune System Mice for High-Containment Viral Hemorrhagic Fever Research. Vaccines, 2020, 8, 98.	2.1	4
7	Dendritic Cells Generated From Mops condylurus, a Likely Filovirus Reservoir Host, Are Susceptible to and Activated by Zaire Ebolavirus Infection. Frontiers in Immunology, 2019, 10, 2414.	2.2	5
8	Differential Innate Immune Responses Elicited by Nipah Virus and Cedar Virus Correlate with Disparate In Vivo Pathogenesis in Hamsters. Viruses, 2019, 11, 291.	1.5	37
9	Rousette Bat Dendritic Cells Overcome Marburg Virus-Mediated Antiviral Responses by Upregulation of Interferon-Related Genes While Downregulating Proinflammatory Disease Mediators. MSphere, 2019, 4, .	1.3	20
10	Severity of Disease in Humanized Mice Infected With Ebola Virus or Reston Virus Is Associated With Magnitude of Early Viral Replication in Liver. Journal of Infectious Diseases, 2018, 217, 58-63.	1.9	26
11	Two recombinant human monoclonal antibodies that protect against lethal Andes hantavirus infection in vivo. Science Translational Medicine, 2018, 10, .	5.8	49
12	Pathogenicity and Viral Shedding of MERS-CoV in Immunocompromised Rhesus Macaques. Frontiers in Immunology, 2018, 9, 205.	2.2	41
13	Pathogenicity of Ebola and Marburg Viruses Is Associated With Differential Activation of the Myeloid Compartment in Humanized Triple Knockout-Bone Marrow, Liver, and Thymus Mice. Journal of Infectious Diseases, 2018, 218, S409-S417.	1.9	19
14	Immunobiology of Ebola and Lassa virus infections. Nature Reviews Immunology, 2017, 17, 195-207.	10.6	95
15	Human immune system mouse models of Ebola virus infection. Current Opinion in Virology, 2017, 25, 90-96.	2.6	20
16	Amending Koch's postulates for viral disease: When "growth in pure culture―leads to a loss of virulence. Antiviral Research, 2017, 137, 1-5.	1.9	19
17	The Merits of Malaria Diagnostics during an Ebola Virus Disease Outbreak. Emerging Infectious Diseases, 2016, 22, 323-6.	2.0	25
18	Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool. Emerging Infectious Diseases, 2016, 22, 331-4.	2.0	175

Joseph Prescott

#	Article	IF	CITATIONS
19	Peri-exposure protection against Nipah virus disease using a single-dose recombinant vesicular stomatitis virus-based vaccine. Npj Vaccines, 2016, 1, .	2.9	26
20	Ebola Virus Replication and Disease Without Immunopathology in Mice Expressing Transgenes to Support Human Myeloid and Lymphoid Cell Engraftment. Journal of Infectious Diseases, 2016, 214, S308-S318.	1.9	24
21	Clinical Chemistry of Patients With Ebola in Monrovia, Liberia. Journal of Infectious Diseases, 2016, 214, S303-S307.	1.9	7
22	PlasmodiumParasitemia Associated With Increased Survival in Ebola Virus–Infected Patients. Clinical Infectious Diseases, 2016, 63, 1026-1033.	2.9	42
23	Ebola Laboratory Response at the Eternal Love Winning Africa Campus, Monrovia, Liberia, 2014–2015. Journal of Infectious Diseases, 2016, 214, S169-S176.	1.9	24
24	Humanized Mice—A Neoteric Animal Disease Model for Ebola Virus?: Table 1 Journal of Infectious Diseases, 2016, 213, 691-693.	1.9	7
25	Postmortem Stability of Ebola Virus. Emerging Infectious Diseases, 2015, 21, 856-859.	2.0	81
26	Ebola Virus Stability on Surfaces and in Fluids in Simulated Outbreak Environments. Emerging Infectious Diseases, 2015, 21, 1243-1246.	2.0	79
27	Natural Immunity to Ebola Virus in the Syrian Hamster Requires Antibody Responses. Journal of Infectious Diseases, 2015, 212, S271-S276.	1.9	13
28	Characterization of the Host Response to Pichinde Virus Infection in the Syrian Golden Hamster by Species-Specific Kinome Analysis. Molecular and Cellular Proteomics, 2015, 14, 646-657.	2.5	16
29	Understanding Ebola Virus Transmission. Viruses, 2015, 7, 511-521.	1.5	76
30	Single-dose live-attenuated vesicular stomatitis virus-based vaccine protects African green monkeys from Nipah virus disease. Vaccine, 2015, 33, 2823-2829.	1.7	64
31	Lack of Protection Against Ebola Virus from Chloroquine in Mice and Hamsters. Emerging Infectious Diseases, 2015, 21, 1065-1067.	2.0	57
32	Shedding of Ebola Virus in an Asymptomatic Pregnant Woman. New England Journal of Medicine, 2015, 372, 2467-2469.	13.9	57
33	Hantavirus Immunology of Rodent Reservoirs: Current Status and Future Directions. Viruses, 2014, 6, 1317-1335.	1.5	50
34	Foodborne Transmission of Nipah Virus in Syrian Hamsters. PLoS Pathogens, 2014, 10, e1004001.	2.1	56
35	Long-Term Single-Dose Efficacy of a Vesicular Stomatitis Virus-Based Andes Virus Vaccine in Syrian Hamsters. Viruses, 2014, 6, 516-523.	1.5	25
36	Differential Lymphocyte and Antibody Responses in Deer Mice Infected with Sin Nombre Hantavirus or Andes Hantavirus. Journal of Virology, 2014, 88, 8319-8331.	1.5	18

JOSEPH PRESCOTT

#	Article	IF	CITATIONS
37	Pathophysiology of hantavirus pulmonary syndrome in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7114-7119.	3.3	65
38	Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins. Vaccine, 2014, 32, 2637-2644.	1.7	73
39	Expression profiling of lymph node cells from deer mice infected with Andes virus. BMC Immunology, 2013, 14, 18.	0.9	18
40	The adaptive immune response does not influence hantavirus disease or persistence in the <scp>S</scp> yrian hamster. Immunology, 2013, 140, 168-178.	2.0	44
41	Henipavirus Pathogenesis in Human Respiratory Epithelial Cells. Journal of Virology, 2013, 87, 3284-3294.	1.5	46
42	Comparison of the Pathogenicity of Nipah Virus Isolates from Bangladesh and Malaysia in the Syrian Hamster. PLoS Neglected Tropical Diseases, 2013, 7, e2024.	1.3	71
43	Hamster-Adapted Sin Nombre Virus Causes Disseminated Infection and Efficiently Replicates in Pulmonary Endothelial Cells without Signs of Disease. Journal of Virology, 2013, 87, 4778-4782.	1.5	28
44	Experimental Andes Virus Infection in Deer Mice: Characteristics of Infection and Clearance in a Heterologous Rodent Host. PLoS ONE, 2013, 8, e55310.	1.1	25
45	The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Does Not Replicate in Syrian Hamsters. PLoS ONE, 2013, 8, e69127.	1.1	114
46	Kinetics of Immune Responses in Deer Mice Experimentally Infected with Sin Nombre Virus. Journal of Virology, 2012, 86, 10015-10027.	1.5	39
47	The immune response to Nipah virus infection. Archives of Virology, 2012, 157, 1635-1641.	0.9	19
48	Antagonism of Type I Interferon Responses by New World Hantaviruses. Journal of Virology, 2010, 84, 11790-11801.	1.5	52
49	New World Hantaviruses Activate IFNλ Production in Type I IFN-Deficient Vero E6 Cells. PLoS ONE, 2010, 5, e11159.	1.1	46
50	Genomic organization and phylogenetic utility of deer mouse (Peromyscus maniculatus) lymphotoxin-alpha and lymphotoxin-beta. BMC Immunology, 2008, 9, 62.	0.9	0
51	Early Innate Immune Responses to Sin Nombre Hantavirus Occur Independently of IFN Regulatory Factor 3, Characterized Pattern Recognition Receptors, and Viral Entry. Journal of Immunology, 2007, 179, 1796-1802.	0.4	44
52	Regulatory T cell-like responses in deer mice persistently infected with Sin Nombre virus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15496-15501.	3.3	99
53	Induction of Innate Immune Response Genes by Sin Nombre Hantavirus Does Not Require Viral Replication. Journal of Virology, 2005, 79, 15007-15015.	1.5	52
54	Research Article: Isolation and cytokine gene expression of deer mouse peritoneal macrophages. Bios, 2004, 75, 103-108.	0.0	0

Joseph Prescott

#	Article	IF	CITATIONS
55	Generation of competent bone marrow-derived antigen presenting cells from the deer mouse (Peromyscus maniculatus). BMC Immunology, 2004, 5, 23.	0.9	11
56	Neutralizing antibodies and Sin Nombre virus RNA after recovery from hantavirus cardiopulmonary syndrome. Emerging Infectious Diseases, 2004, 10, 478-82.	2.0	29
57	Persistent Sin Nombre Virus Infection in the Deer Mouse (Peromyscus maniculatus) Model: Sites of Replication and Strand-Specific Expression. Journal of Virology, 2003, 77, 1540-1550.	1.5	117
58	SEQUENCE AND EXPRESSION ANALYSIS OF DEER MOUSE INTERFERON-Î ³ , INTERLEUKIN-10, TUMOR NECROSIS FACTOR, AND LYMPHOTOXIN-α. Cytokine, 2002, 17, 203-213.	1.4	22