
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/343850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the aromatic backbone twist in dipyrrolonaphthyridinediones. Chemical Communications, 2022, 58, 3697-3700.	2.2	3
2	Water Oxidation and Hydrogen Evolution with Organic Photooxidants: A Theoretical Perspective. Journal of Physical Chemistry B, 2022, 126, 2777-2788.	1.2	2
3	Photochemical Hydrogen Storage with Hexaazatrinaphthylene (HATN). ChemPhysChem, 2022, , .	1.0	2
4	Cover Feature: Photochemical Hydrogen Storage with Hexaazatrinaphthylene (ChemPhysChem 11/2022). ChemPhysChem, 2022, 23, .	1.0	0
5	Substituent effects on the photophysical properties of tris(salicylideneanilines). Physical Chemistry Chemical Physics, 2021, 23, 1156-1164.	1.3	15
6	Triangular boron carbon nitrides: an unexplored family of chromophores with unique properties for photocatalysis and optoelectronics. Physical Chemistry Chemical Physics, 2021, 23, 12968-12975.	1.3	28
7	Bowlâ€Shaped Pentagon―and Heptagonâ€Embedded Nanographene Containing a Central Pyrrolo[3,2â€ <i>b</i>]pyrrole Core. Angewandte Chemie - International Edition, 2021, 60, 14998-15005.	7.2	53
8	Rücktitelbild: Bowlâ€Shaped Pentagon―and Heptagonâ€Embedded Nanographene Containing a Central Pyrrolo[3,2â€ <i>b</i>]pyrrole Core (Angew. Chem. 27/2021). Angewandte Chemie, 2021, 133, 15240-15240.	1.6	0
9	Bowlâ€Shaped Pentagon―and Heptagonâ€Embedded Nanographene Containing a Central Pyrrolo[3,2―b]pyrrole Core. Angewandte Chemie, 2021, 133, 15125-15132.	1.6	14
10	Are Heptazine-Based Organic Light-Emitting Diode Chromophores Thermally Activated Delayed Fluorescence or Inverted Singlet–Triplet Systems?. Journal of Physical Chemistry Letters, 2021, 12, 6852-6860.	2.1	45
11	Modern Theoretical Approaches to Modeling the Excited-State Intramolecular Proton Transfer: An Overview. Molecules, 2021, 26, 5140.	1.7	28
12	Unravelling the ambiguity of the emission pattern of donor–acceptor salicylaldimines. Journal of Molecular Liquids, 2021, 343, 117532.	2.3	19
13	Potent strategy towards strongly emissive nitroaromatics through a weakly electron-deficient core. Chemical Science, 2021, 12, 14039-14049.	3.7	19
14	Photooxidation of water with heptazine-based molecular photocatalysts: Insights from spectroscopy and computational chemistry. Journal of Chemical Physics, 2020, 153, 100902.	1.2	17
15	Photoinduced water oxidation in pyrimidine–water clusters: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2020, 22, 12502-12514.	1.3	16
16	Tracking both ultrafast electrons and nuclei. Science, 2020, 368, 820-821.	6.0	3
17	Aggregation controlled photoluminescence of hexaazatri-naphthylene (HATN) – an experimental and theoretical study. Physical Chemistry Chemical Physics, 2020, 22, 15437-15447.	1.3	4
18	Photophysical transformations induced by chemical substitution to salicylaldimines. Physical Chemistry Chemical Physics, 2020, 22, 6698-6705.	1.3	23

#	Article	IF	CITATIONS
19	Highly Polarized Coumarin Derivatives Revisited: Solventâ€Controlled Competition Between Protonâ€Coupled Electron Transfer and Twisted Intramolecular Charge Transfer. Chemistry - A European Journal, 2020, 26, 7281-7291.	1.7	11
20	Control of Excited-State Proton-Coupled Electron Transfer by Ultrafast Pump-Push-Probe Spectroscopy in Heptazine-Phenol Complexes: Implications for Photochemical Water Oxidation. Journal of Physical Chemistry C, 2020, 124, 9151-9160.	1.5	18
21	Molecular Design of Heptazine-Based Photocatalysts: Effect of Substituents on Photocatalytic Efficiency and Photostability. Journal of Physical Chemistry A, 2020, 124, 3698-3710.	1.1	20
22	The Interplay between Solvation and Stacking of Aromatic Rings Governs Bright and Dark Sites of Benzo[<i>g</i>]coumarins. Chemistry - A European Journal, 2019, 25, 15305-15314.	1.7	6
23	Singlet–Triplet Inversion in Heptazine and in Polymeric Carbon Nitrides. Journal of Physical Chemistry A, 2019, 123, 8099-8108.	1.1	87
24	Mechanisms of photoreactivity in hydrogen-bonded adenine–H ₂ O complexes. Physical Chemistry Chemical Physics, 2019, 21, 14238-14249.	1.3	9
25	Photodynamics of alternative DNA base isoguanine. Physical Chemistry Chemical Physics, 2019, 21, 13474-13485.	1.3	18
26	Role of the Pyridinyl Radical in the Light-Driven Reduction of Carbon Dioxide: A First-Principles Study. Journal of Physical Chemistry A, 2019, 123, 3678-3684.	1.1	4
27	The synthesis and photophysical properties of tris-coumarins. Physical Chemistry Chemical Physics, 2019, 21, 8314-8325.	1.3	7
28	Efficient Separation of Photogenerated Charges in a Ferroelectric Molecular Wire: Nonadiabatic Dynamics Study on 3,5â€Dicyanoâ€1,7â€dimethylopyrrolo[3,2â€f]indole Trimer. ChemPhotoChem, 2019, 3, 167	7-167.	0
29	Barrierless Heptazine-Driven Excited State Proton-Coupled Electron Transfer: Implications for Controlling Photochemistry of Carbon Nitrides and Aza-Arenes. Journal of Physical Chemistry C, 2019, 123, 29580-29588.	1.5	21
30	Efficient Separation of Photogenerated Charges in a Ferroelectric Molecular Wire: Nonadiabatic Dynamics Study on 3,5â€Dicyanoâ€1,7â€dimethylopyrrolo[3,2â€f]indole Trimer. ChemPhotoChem, 2019, 3, 187	-1 <mark>9</mark> 5.	1
31	Solar Energy Harvesting with Carbon Nitrides and Nâ€Heterocyclic Frameworks: Do We Understand the Mechanism?. ChemPhotoChem, 2019, 3, 10-23.	1.5	31
32	Sequential electron transfer governs the UV-induced self-repair of DNA photolesions. Chemical Science, 2018, 9, 3131-3140.	3.7	27
33	Ultrafast dynamics of the ESIPT photoswitch <i>N</i> -(3-pyridinyl)-2-pyridinecarboxamide. Physical Chemistry Chemical Physics, 2018, 20, 2646-2655.	1.3	29
34	Proton-Coupled Electron Transfer from Water to a Model Heptazine-Based Molecular Photocatalyst. Journal of Physical Chemistry Letters, 2018, 9, 6257-6261.	2.1	51
35	Evidence for competing proton-transfer and hydrogen-transfer reactions in the S1 state of indigo. Chemical Physics, 2018, 515, 535-542.	0.9	10
36	Photoinduced hydrogen-transfer reactions in pyridine-water clusters: Insights from excited-state electronic-structure calculations. Chemical Physics, 2018, 515, 550-556.	0.9	10

#	Article	IF	CITATIONS
37	An Ab initio study on the photophysics of tris(salicylideneaniline). Physical Chemistry Chemical Physics, 2018, 20, 25164-25168.	1.3	24
38	Effect of conformational flexibility on photophysics of bis-coumarins. Physical Chemistry Chemical Physics, 2018, 20, 14491-14503.	1.3	13
39	Mechanism of photocatalytic water splitting with triazine-based carbon nitrides: insights from ab initio calculations for the triazine–water complex. Physical Chemistry Chemical Physics, 2018, 20, 14420-14430.	1.3	35
40	Tailoring the Schiff base photoswitching – a non-adiabatic molecular dynamics study of substituent effect on excited state proton transfer. Physical Chemistry Chemical Physics, 2017, 19, 5318-5325.	1.3	30
41	The Coumarinâ€Dimer Spring—The Struggle between Charge Transfer and Steric Interactions. Chemistry - A European Journal, 2017, 23, 9174-9184.	1.7	12
42	Mechanism of Photocatalytic Water Splitting with Graphitic Carbon Nitride: Photochemistry of the Heptazine–Water Complex. Journal of Physical Chemistry A, 2017, 121, 4754-4764.	1.1	85
43	Nonadiabatic dynamics simulation of keto isocytosine: a comparison of dynamical performance of different electronic-structure methods. Physical Chemistry Chemical Physics, 2017, 19, 19168-19177.	1.3	28
44	Ferroelectric molecular field-switch based on double proton transfer process: Static and dynamical simulations. Journal of Chemical Physics, 2016, 144, 134303.	1.2	7
45	Onset of the Electronic Absorption Spectra of Isolated and π-Stacked Oligomers of 5,6-Dihydroxyindole: An <i>Ab Initio</i> Study of the Building Blocks of Eumelanin. Journal of Physical Chemistry B, 2016, 120, 3493-3502.	1.2	37
46	Conical-Intersection Topographies Suggest That Ribose Exhibits Enhanced UV Photostability. Journal of Physical Chemistry B, 2016, 120, 10729-10735.	1.2	12
47	Photocatalytic water splitting with acridine dyes: Guidelines from computational chemistry. Chemical Physics, 2016, 464, 78-85.	0.9	10
48	Ferrimagnetism in 2D networks of porphyrin-X and -XO (X=Sc,,Zn) with acetylene bridges. Journal of Magnetism and Magnetic Materials, 2016, 401, 304-309.	1.0	7
49	Environment‣ensitive Behavior of DCNP in Solvents with Different Viscosity, Polarity and Proticity. ChemPhysChem, 2015, 16, 3500-3510.	1.0	11
50	Titanyl Phthalocyanine as a Water Photooxidation Agent. Journal of Physical Chemistry C, 2015, , 150611081346002.	1.5	7
51	Organic photovoltaics without p–n junctions: a computational study of ferroelectric columnar molecular clusters. Physical Chemistry Chemical Physics, 2015, 17, 20580-20587.	1.3	11
52	Electric field control of proton-transfer molecular switching: molecular dynamics study on salicylidene aniline. Physical Chemistry Chemical Physics, 2015, 17, 14484-14488.	1.3	15
53	Contacts for organic switches with carbon-nanotube leads. Nanotechnology, 2015, 26, 245201.	1.3	3
54	Photocatalytic Water Splitting with the Acridine Chromophore: A Computational Study. Journal of Physical Chemistry B, 2015, 119, 10664-10672.	1.2	41

#	Article	IF	CITATIONS
55	Mechanisms of Photostability in Kynurenines: A Joint Electronic-Structure and Dynamics Study. Journal of Physical Chemistry B, 2015, 119, 2112-2124.	1.2	33
56	Ultrafast Dynamics of a Bistable Intramolecular Proton Transfer Switch. Springer Proceedings in Physics, 2015, , 399-402.	0.1	1
57	Ultrafast Dynamics of a Bistable Intramolecular Proton Transfer Switch. , 2014, , .		0
58	Electronically excited states and photochemical reaction mechanisms of β-glucose. Physical Chemistry Chemical Physics, 2014, 16, 38-47.	1.3	20
59	Multipeak negative differential resistance from interplay between nonlinear stark effect and double-branch current flow. RSC Advances, 2014, 4, 52933-52939.	1.7	7
60	Solvent effects on the photochemistry of 4-aminoimidazole-5-carbonitrile, a prebiotically plausible precursor of purines. Physical Chemistry Chemical Physics, 2014, 16, 17617-17626.	1.3	13
61	Effect of chemical substitutions on photo-switching properties of 3-hydroxy-picolinic acid studied by <i>ab initio</i> methods. Journal of Chemical Physics, 2014, 140, 084301.	1.2	19
62	Photoinduced water splitting with oxotitanium tetraphenylporphyrin. Physical Chemistry Chemical Physics, 2014, 16, 15256-15262.	1.3	15
63	Mechanisms of Ultrafast Excited-State Deactivation in Adenosine. Journal of Physical Chemistry A, 2014, 118, 122-127.	1.1	76
64	Photochemical Mechanisms of Radiationless Deactivation Processes in Urocanic Acid. Journal of Physical Chemistry B, 2014, 118, 976-985.	1.2	35
65	Photoinduced Oxidation of Water in the Pyridine–Water Complex: Comparison of the Singlet and Triplet Photochemistries. Journal of Physical Chemistry A, 2014, 118, 7788-7795.	1.1	33
66	Switching the conductance of a molecular junction using a proton transfer reaction. Journal of Molecular Modeling, 2014, 20, 2163.	0.8	13
67	Excitedâ€ S tate Intramolecular Proton Transfer: Photoswitching in Salicylidene Methylamine Derivatives. ChemPhysChem, 2014, 15, 1643-1652.	1.0	49
68	Photochemistry of 2-Aminooxazole, a Hypothetical Prebiotic Precursor of RNA Nucleotides. Journal of Physical Chemistry Letters, 2013, 4, 2785-2788.	2.1	29
69	7-Hydroxyquinoline-8-carbaldehydes. 1. Ground- and Excited-State Long-Range Prototropic Tautomerization. Journal of Physical Chemistry A, 2013, 117, 9127-9146.	1.1	31
70	7-Hydroxyquinoline-8-carbaldehydes. 2. Prototropic Equilibria. Journal of Physical Chemistry A, 2013, 117, 9147-9155.	1.1	11
71	Computational investigation of the photoinduced homolytic dissociation of water in the pyridine–water complex. Physical Chemistry Chemical Physics, 2013, 15, 5957.	1.3	51
72	Spectroscopy meets theory. Nature Chemistry, 2013, 5, 257-258.	6.6	28

#	Article	IF	CITATIONS
73	Electronic Spectra and Reversible Photoisomerization of Protonated Naphthalenes in Solid Neon. Journal of Physical Chemistry A, 2013, 117, 351-360.	1.1	15
74	On the nature and signatures of the solvated electron in water. Physical Chemistry Chemical Physics, 2012, 14, 22-34.	1.3	141
75	Photophysics of Schiff Bases: Theoretical Study of Salicylidene Methylamine. ChemPhysChem, 2012, 13, 4287-4294.	1.0	45
76	Ab initio study on the excited state proton transfer mediated photophysics of 3-hydroxy-picolinic acid. Chemical Physics, 2012, 409, 41-48.	0.9	15
77	Photoinduced water splitting with oxotitanium porphyrin: a computational study. Physical Chemistry Chemical Physics, 2012, 14, 12807.	1.3	25
78	Photophysics of indole-2-carboxylic acid in an aqueous environment studied by fluorescence spectroscopy in combination with ab initio calculations. Physical Chemistry Chemical Physics, 2012, 14, 2078.	1.3	12
79	Efficient Excited-State Deactivation in Organic Chromophores and Biologically Relevant Molecules: Role of Electron and Proton Transfer Processes. Advanced Series in Physical Chemistry, 2011, , 51-82.	1.5	5
80	Molecular mechanisms of the photostability of indigo. Physical Chemistry Chemical Physics, 2011, 13, 1618-1628.	1.3	86
81	Radiationless decay of excited states of tetrahydrocannabinol through the S 1–S 0 (conical) intersection. Theoretical Chemistry Accounts, 2010, 125, 503-509.	0.5	1
82	Molecular mechanisms of the photostability of life. Physical Chemistry Chemical Physics, 2010, 12, 4897.	1.3	44
83	Effect of Chemical Substituents on the Energetical Landscape of a Molecular Photoswitch: An Ab Initio Study. Journal of Physical Chemistry A, 2010, 114, 11879-11889.	1.1	86
84	Comparison of the non-radiative decay mechanisms of 4-pyrimidinone and uracil: an ab initio study. Physical Chemistry Chemical Physics, 2010, 12, 5007.	1.3	61
85	Role of excited-state hydrogen detachment and hydrogen-transfer processes for the excited-state deactivation of an aromatic dipeptide: N-acetyl tryptophan methyl amide. Physical Chemistry Chemical Physics, 2010, 12, 4899.	1.3	29
86	A Bistable Molecular Switch Driven by Photoinduced Hydrogenâ€Atom Transfer. ChemPhysChem, 2009, 10, 2290-2295.	1.0	53
87	Ab initio study of the energetics of photoinduced electron and proton transfer processes in a bio-inspired model of photochemical water splitting. Chemical Physics Letters, 2009, 479, 144-148.	1.2	12
88	Computational Study on the Photophysics of Protonated Benzene. Journal of Physical Chemistry A, 2009, 113, 5865-5873.	1.1	38
89	Efficient Excited-State Deactivation of the Gly-Phe-Ala Tripeptide via an Electron-Driven Proton-Transfer Process. Journal of the American Chemical Society, 2009, 131, 1374-1375.	6.6	65
90	On the Origin of Radiationless Transitions in Porphycenes. Journal of Physical Chemistry A, 2009, 113, 7714-7716.	1.1	40

6

#	Article	IF	CITATIONS
91	Computational Studies of the Photophysics of Neutral and Zwitterionic Amino Acids in an Aqueous Environment: Tyrosineâ^'(H2O)2 and Tryptophanâ^'(H2O)2 Clusters. Journal of Physical Chemistry A, 2009, 113, 542-550.	1.1	57
92	Photochemistry of the water dimer: Time-dependent quantum wave-packet description of the dynamics at the S1-S0 conical intersection. Journal of Chemical Physics, 2009, 131, 134307.	1.2	9
93	Photophysics of xanthine: computational study of the radiationless decay mechanisms. Physical Chemistry Chemical Physics, 2009, 11, 10165.	1.3	34
94	Franck–Condon analysis of laser-induced fluorescence excitation spectrum of anthranilic acid: Evaluation of geometry change upon S0→S1 excitation. Journal of Chemical Physics, 2009, 130, 054307.	1.2	14
95	Computational studies of the photophysics of neutral and zwitterionic glycine in an aqueous environment: The glycine–(H2O)2 cluster. Chemical Physics Letters, 2008, 457, 404-407.	1.2	10
96	Photophysics of inter- and intra-molecularly hydrogen-bonded systems: Computational studies on the pyrrole–pyridine complex and 2(2′-pyridyl)pyrrole. Chemical Physics, 2008, 347, 413-421.	0.9	40
97	Computational Model of Photocatalytic Water Splitting. Journal of Physical Chemistry A, 2008, 112, 7311-7313.	1.1	17
98	Nonradiative Decay Mechanisms of the Biologically Relevant Tautomer of Guanine. Journal of Physical Chemistry A, 2008, 112, 11965-11968.	1.1	109
99	Reversible molecular switch driven by excited-state hydrogen transfer. Physical Chemistry Chemical Physics, 2008, 10, 1243.	1.3	68
100	Photochemistry of hydrogen-bonded aromatic pairs: Quantum dynamical calculations for the pyrrole–pyridine complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12707-12712.	3.3	74
101	<i>Ab initio</i> characterization of the conical intersections involved in the photochemistry of phenol. Journal of Chemical Physics, 2008, 129, 224307.	1.2	105
102	A Computational Study on the Mechanism of Intramolecular Oxoâ^'Hydroxy Phototautomerism Driven by Repulsive πσ* State. Journal of Physical Chemistry A, 2008, 112, 13655-13661.	1.1	70
103	Thioperoxy Derivative Generated by UV-Induced Transformation of <i>N</i> -Hydroxypyridine-2(1 <i>H</i>)-thione Isolated in Low-Temperature Matrixes. Journal of Physical Chemistry A, 2008, 112, 238-248.	1.1	8
104	Computational Studies of the Photophysics of Hydrogen-Bonded Molecular Systems. Journal of Physical Chemistry A, 2007, 111, 11725-11735.	1.1	227
105	Glycine in an Electronically Excited State:  Ab Initio Electronic Structure and Dynamical Calculations. Journal of Physical Chemistry A, 2007, 111, 5259-5269.	1.1	17
106	Computational studies of aqueous-phase photochemistry and the hydrated electron in finite-size clusters. Physical Chemistry Chemical Physics, 2007, 9, 3818.	1.3	48
107	Photoinduced Electron and Proton Transfer in the Hydrogen-Bonded Pyridineâ^'Pyrrole System. Journal of Physical Chemistry B, 2007, 111, 6110-6112.	1.2	31
108	AbinitioStudy of the Excited-State Deactivation Pathways of Protonated Tryptophan and Tyrosine. Journal of the American Chemical Society, 2007, 129, 6223-6231.	6.6	99

#	Article	IF	CITATIONS
109	Photophysics of Eumelanin: Ab Initio Studies on the Electronic Spectroscopy and Photochemistry of 5,6-Dihydroxyindole. ChemPhysChem, 2007, 8, 756-762.	1.0	65
110	Resonance Raman Spectrum of the Solvated Electron in Methanol:Â Simulation within a Cluster Model. Journal of Physical Chemistry A, 2006, 110, 5613-5619.	1.1	6
111	Conical Intersections in Thymine. Journal of Physical Chemistry A, 2006, 110, 13238-13244.	1.1	200
112	Photophysics of Organic Photostabilizers. Ab Initio Study of the Excited-State Deactivation Mechanisms of 2-(2â€~-Hydroxyphenyl)benzotriazole. Journal of Physical Chemistry A, 2006, 110, 6301-6306.	1.1	107
113	Role of the Intermolecular Vibrations in the Hydrogen Transfer Rate:Â The 3-Methylindoleâ^'NH3Complex. Journal of Physical Chemistry A, 2006, 110, 9383-9387.	1.1	15
114	Photoisomerizations ofN4-Hydroxycytosines. Journal of Physical Chemistry A, 2006, 110, 5038-5046.	1.1	6
115	Photophysics of intramolecularly hydrogen-bonded aromatic systems: ab initio exploration of the excited-state deactivation mechanisms of salicylic acid. Physical Chemistry Chemical Physics, 2006, 8, 3410.	1.3	131
116	Role of Electron-Driven Proton-Transfer Processes in the Excited-State Deactivation of the Adenineâ^ Thymine Base Pair. Journal of Physical Chemistry A, 2006, 110, 9031-9038.	1.1	180
117	Simulation of resonance Raman spectra of the solvated electron in water and methanol. , 2006, , 154-162.		1
118	The chemical physics of the photostability of life. Europhysics News, 2006, 37, 20-23.	0.1	93
119	Ab initio studies of the photophysics of 2-aminopurine. Molecular Physics, 2006, 104, 1113-1121.	0.8	46
120	Relevance of Electron-Driven Proton-Transfer Processes for the Photostability of Proteins. ChemPhysChem, 2006, 7, 561-564.	1.0	64
121	Theoretical study of the photophysics of SF5CF3. Chemical Physics, 2005, 313, 169-176.	0.9	7
122	Photostability of 9H-adenine: mechanisms of the radiationless deactivation of the lowest excited singlet states. Chemical Physics, 2005, 313, 107-112.	0.9	170
123	Photochemistry of MCl(H2O)4, M: H, Li, Na Clusters: Finite-Size Models of the Photodetachment of the Chloride Anion in Salt Solutions. ChemInform, 2005, 36, no.	0.1	Ο
124	Photochemistry of water: The (H2O)5 cluster. Journal of Chemical Physics, 2005, 122, 184320.	1.2	25
125	Photochemistry of pyrrole: Time-dependent quantum wave-packet description of the dynamics at the $\tilde{I}\in 1\tilde{I}f^*$ -S0 conical intersections. Journal of Chemical Physics, 2005, 123, 144307.	1.2	120
126	Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: The role of electron-driven proton-transfer processes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17903-17906.	3.3	290

#	Article	IF	CITATIONS
127	Time-dependent quantum wave-packet description of the π1σ* photochemistry of phenol. Journal of Chemical Physics, 2005, 122, 224315.	1.2	177
128	Photochemistry of MCl(H2O)4, M = H, Li, Na clusters: finite-size models of the photodetachment of the chloride anion in salt solutions. Physical Chemistry Chemical Physics, 2005, 7, 970.	1.3	25
129	Ab Initio Studies on the Radiationless Decay Mechanisms of the Lowest Excited Singlet States of 9H-Adenine. Journal of the American Chemical Society, 2005, 127, 6257-6265.	6.6	306
130	Ab initio studies on the photophysics of the guanine–cytosine base pair. Physical Chemistry Chemical Physics, 2004, 6, 2763-2771.	1.3	273
131	Time-dependent quantum wave-packet description of the1πσ* photochemistry of pyrrole. Faraday Discussions, 2004, 127, 283-293.	1.6	78
132	Simulation of the resonance Raman spectrum of the hydrated electron in the hydrated-hydronium cluster model. Physical Chemistry Chemical Physics, 2004, 6, 5297.	1.3	20
133	Efficient Deactivation of a Model Base Pair via Excited-State Hydrogen Transfer. Science, 2004, 306, 1765-1768.	6.0	330
134	Intramolecular Hydrogen Bonding in the S1(ππ*) Excited State of Anthranilic Acid and Salicylic Acid: TDDFT Calculation of Excited-State Geometries and Infrared Spectra. Journal of Physical Chemistry A, 2004, 108, 10917-10922.	1.1	100
135	Photochemistry of HCl(H2O)4: Cluster Model of the Photodetachment of the Chloride Anion in Water. ChemInform, 2003, 34, no.	0.1	Ο
136	Ab initio study of the excited-state coupled electron–proton-transfer process in the 2-aminopyridine dimer. Chemical Physics, 2003, 294, 73-83.	0.9	166
137	Photochemistry of HCl(H2O)4:Â Cluster Model of the Photodetachment of the Chloride Anion in Water. Journal of Physical Chemistry A, 2003, 107, 1557-1562.	1.1	40
138	Anionic water clusters with large vertical electron binding energies and their electronic spectra: (H2O)11– and (H2O)14–. Physical Chemistry Chemical Physics, 2003, 5, 1130-1136.	1.3	30
139	CHEMISTRY: Unraveling the Molecular Mechanisms of Photoacidity. Science, 2003, 302, 1693-1694.	6.0	158
140	AB Initio Reaction Paths and Potential-Energy Functions for Excited-State Intra- and Intermolecular Hydrogen-Transfer Processes. , 2002, , 93-118.		4
141	Ab Initio Investigation of the Structure and Spectroscopy of Hydroniumâ^'Water Clusters. Journal of Physical Chemistry A, 2002, 106, 4158-4167.	1.1	154
142	Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: A new paradigm for nonradiative decay in aromatic biomolecules. Physical Chemistry Chemical Physics, 2002, 4, 1093-1100.	1.3	881
143	Hydrated hydronium: a cluster model of the solvated electron?. Physical Chemistry Chemical Physics, 2002, 4, 4-10.	1.3	133
144	Development of an effective single-electron model of the electronic structure of hydronium and hydronium–water clusters. Chemical Physics Letters, 2002, 356, 556-562.	1.2	13

#	Article	IF	CITATIONS
145	Photoinduced Electron and Proton Transfer in Phenol and Its Clusters with Water and Ammonia. Journal of Physical Chemistry A, 2001, 105, 9275-9283.	1.1	273
146	The infrared spectroscopy of HNCCC: matrix isolation and density functional theory study. Chemical Physics Letters, 2001, 344, 625-630.	1.2	36
147	Conical intersections induced by repulsive 1Ï€Ïf* states in planar organic molecules: malonaldehyde, pyrrole and chlorobenzene as photochemical model systems. Chemical Physics, 2000, 259, 181-191.	0.9	221
148	Photoejection of electrons from pyrrole into an aqueous environment: ab initio results on pyrrole-water clusters. Chemical Physics Letters, 2000, 321, 479-484.	1.2	56
149	Photoinduced charge separation in indole–water clusters. Chemical Physics Letters, 2000, 329, 130-137.	1.2	68
150	Molecular-dynamics simulations of solvent effects in the intramolecular charge transfer of 4-(N,N-dimethylamino)benzonitrile. Physical Chemistry Chemical Physics, 2000, 2, 4341-4353.	1.3	39
151	Photochemical Synâ~'Anti Isomerization Reaction in 1-Methyl-N4-hydroxycytosine. An Experimental Matrix Isolation and Theoretical Density Functional Theory Study. Journal of Physical Chemistry A, 2000, 104, 9459-9466.	1.1	12
152	Ab initio study of the amino group twisting and wagging reaction paths in the intramolecular charge transfer of 4-(N,N-dimethylamino)benzonitrile. Chemical Physics, 1999, 240, 9-18.	0.9	54
153	On the mechanism of rapid non-radiative decay in intramolecularly hydrogen-bonded π systems. Chemical Physics Letters, 1999, 300, 533-539.	1.2	53
154	Potential-energy function for intramolecular proton transfer in the malonaldehyde cation. Chemical Physics Letters, 1999, 310, 548-552.	1.2	5
155	Ab initio investigations on the photophysics of indole. Chemical Physics Letters, 1999, 315, 293-298.	1.2	213
156	Photophysics of Malonaldehyde:Â An ab Initio Study. Journal of Physical Chemistry A, 1999, 103, 4494-4504.	1.1	104
157	Ab initio potential-energy functions for excited state intramolecular proton transfer: a comparative study of o-hydroxybenzaldehyde, salicylic acid and 7-hydroxy-1-indanone. Physical Chemistry Chemical Physics, 1999, 1, 3065-3072.	1.3	246
158	Ab initio study of excited-state intramolecular proton dislocation in salicylic acid. Chemical Physics, 1998, 232, 257-265.	0.9	115
159	Ab Initio Investigation of Reaction Pathways for Intramolecular Charge Transfer in Dimethylanilino Derivatives. Journal of Physical Chemistry A, 1998, 102, 2716-2722.	1.1	129
160	Dual Fluorescence in Aromatic Nitriles:Â The Role of the Charge-Transfer State. Journal of Physical Chemistry A, 1997, 101, 8221-8226.	1.1	24
161	Mechanism of photoinduced intramolecular charge transfer in aminobenzethynes: an ab initio study. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 105, 325-328.	2.0	6
162	The cooperative dynamical Jahn-Teller effect in alkali doped fullerides. Chemical Physics Letters, 1997, 267, 452-459.	1.2	5

#	Article	IF	CITATIONS
163	Promotion of intramolecular charge transfer in dimethylamino derivatives: twisting versus acceptor-group rehybridization. Chemical Physics Letters, 1996, 259, 119-127.	1.2	143
164	The cooperative Jahn-Teller effect on a two-dimensional molecular layer. Chemical Physics Letters, 1996, 248, 386-392.	1.2	4
165	Charge transfer in aminobenzonitriles: do they twist?. Chemical Physics Letters, 1996, 250, 428-436.	1.2	179
166	Double-proton-transfer in [2,2′-bipyridine]-3,3′-diol: an ab initio study. Chemical Physics Letters, 1996, 252, 33-41.	1.2	51
167	An ab initio study of the potential energy surface in the S1 state of 2-hydroxypyridine. Chemical Physics, 1996, 213, 193-201.	0.9	24
168	Photophysics of 2-Hydroxypyridine:Â Anab InitioStudy. The Journal of Physical Chemistry, 1996, 100, 3933-3941.	2.9	60
169	Theoretical investigations of the proton transfer reaction in hydrogen-bonded complexes of cytosine with HNO. Chemical Physics Letters, 1995, 234, 94-100.	1.2	9
170	Ab initio study of the potential energy functions relevant for hydrogen transfer in formamide, its dimer and its complex with water. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 89, 89-97.	2.0	33
171	Theoretical investigations of the excited-state intramolecular proton transfer reaction in N-substituted-3-hydroxypyridinones. Chemical Physics, 1995, 193, 67-78.	0.9	9
172	A theoretical study on the structure of acetonitrile (CH3CN) and its anion CH3CNâ^'. Chemical Physics, 1995, 196, 1-11.	0.9	31
173	Theoretical investigations of proton transfer reactions in a hydrogen bonded complex of cytosine with water. Journal of Chemical Physics, 1995, 102, 5708-5718.	1.2	48
174	Ab initio characterization of electronically excited states in highly unsaturated hydrocarbons. Journal of Chemical Physics, 1995, 102, 394-399.	1.2	43
175	Theoretical investigations of the proton transfer reaction in the hydrogen-bonded complex of 2-pyrimidinone with water. The Journal of Physical Chemistry, 1995, 99, 14277-14284.	2.9	20
176	Ab initio Studies of Reaction Paths in Excited-State Hydrogen-Transfer Processes. , 1995, , 257-282.		15
177	Characterization of theS1–S2conical intersection in pyrazine usingabinitiomulticonfiguration selfâ€consistentâ€field and multireference configurationâ€interaction methods. Journal of Chemical Physics, 1994, 100, 1400-1413.	1.2	193
178	Theoretical investigation of potential energy surfaces relevant for excited-state hydrogen transfer in o-hydroxybenzaldehyde. Chemical Physics, 1994, 184, 115-124.	0.9	100
179	Evidence for the need of a non-Born—Oppenheimer description of excited-state hydrogen transfer. Chemical Physics Letters, 1993, 211, 82-87.	1.2	46
180	Internal conversion funnel in benzene and pyrazine: adiabatic and diabatic representation. Chemical Physics Letters, 1993, 203, 220-226.	1.2	38

1

#	Article	IF	CITATIONS
181	The mechanism of excited-state hydrogen transfer in 2-hydroxypyridine. Chemical Physics Letters, 1993, 211, 293-299.	1.2	66
182	Ab initioinvestigation of potentialâ€energy surfaces involved in the photophysics of benzene and pyrazine. Journal of Chemical Physics, 1993, 98, 5627-5641.	1.2	140
183	Abinitiocharacterization of theS1–S2conical intersection in pyrazine and calculation of spectra. Journal of Chemical Physics, 1992, 96, 5298-5309.	1.2	110
184	Vibronic coupling in Rydberg series of linear molecules. Chemical Physics, 1991, 156, 21-31.	0.9	4
185	Photophysically relevant potential energy functions of low-lying singlet states of benzene, pyridine and pyrazine: an ab initio study. Chemical Physics Letters, 1991, 180, 381-386.	1.2	50
186	MQDT analysis of radiationless decay rates of autoionizing rydberg states of polyatomic molecules. Chemical Physics Letters, 1989, 162, 336-341.	1.2	12
187	Resonances in molecular photoionization. Ⅳ. Theory of oneâ€color and twoâ€color nearâ€threshold photoionization of molecules. Journal of Chemical Physics, 1988, 89, 6209-6219.	1.2	14
188	Resonances in molecular photoionization. III. Multichannel extension and application to polyatomic molecules. Journal of Chemical Physics, 1988, 88, 5571-5579.	1.2	18
189	Resonances in molecular photoionization. I. Model calculations and analysis of general phenomena. Journal of Chemical Physics, 1987, 86, 176-187.	1.2	18

190 Chemical Reactivity in the Ground and the Excited State. , 0, , 313-497.