Naomi Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3438415/publications.pdf

Version: 2024-02-01

713013 758635 28 463 12 21 citations h-index g-index papers 28 28 28 974 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Letters, 2011, 306, 180-189.	3.2	82
2	Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma. BMC Urology, 2009, 9, 6.	0.6	77
3	Identification of pancreatic cancer invasion-related proteins by proteomic analysis. Proteome Science, 2009, 7, 3.	0.7	59
4	Modelling of pancreatic cancer biology: transcriptomic signature for 3D PDX-derived organoids and primary cell line organoid development. Scientific Reports, 2020, 10, 2778.	1.6	32
5	EGFR and HER2 inhibition in pancreatic cancer. Investigational New Drugs, 2013, 31, 558-566.	1.2	28
6	Development of acquired resistance to lapatinib may sensitise HER2-positive breast cancer cells to apoptosis induction by obatoclax and TRAIL. BMC Cancer, 2018, 18, 965.	1.1	21
7	Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer. Journal of the National Cancer Institute, 2019, 111, 557-567.	3.0	21
8	Alterations in integrin expression modulates invasion of pancreatic cancer cells. Journal of Experimental and Clinical Cancer Research, 2009, 28, 140.	3.5	20
9	Dasatinib Treatment Increases Sensitivity to c-Met Inhibition in Triple-Negative Breast Cancer Cells. Cancers, 2019, 11, 548.	1.7	19
10	The HSP90 inhibitor NVP-AUY922 inhibits growth of HER2 positive and trastuzumab-resistant breast cancer cells. Investigational New Drugs, 2018, 36, 581-589.	1.2	17
11	Aldehyde dehydrogenase 1A1 and gelsolin identified as novel invasion-modulating factors in conditioned medium of pancreatic cancer cells. Journal of Proteomics, 2008, 71, 561-571.	1.2	15
12	7B7: a novel antibody directed against the Ku70/Ku80 heterodimer blocks invasion in pancreatic and lung cancer cells. Tumor Biology, 2014, 35, 6983-6997.	0.8	13
13	Os(II)-Bridged Polyarginine Conjugates: The Additive Effects of Peptides in Promoting or Preventing Permeation in Cells and Multicellular Tumor Spheroids. Inorganic Chemistry, 2021, 60, 8123-8134.	1.9	12
14	Impact of timing of trastuzumab initiation on long-term outcome of patients with early-stage HER2-positive breast cancer: the "one thousand HER2 patients―project. British Journal of Cancer, 2018, 119, 374-380.	2.9	9
15	DNA Damage Repair Deficiency in Pancreatic Ductal Adenocarcinoma: Preclinical Models and Clinical Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 749490.	1.8	6
16	Genetic Alterations Featuring Biological Models to Tailor Clinical Management of Pancreatic Cancer Patients. Cancers, 2020, 12, 1233.	1.7	5
17	Genome-Wide Association Study Data Reveal Genetic Susceptibility to Chronic Inflammatory Intestinal Diseases and Pancreatic Ductal Adenocarcinoma Risk. Cancer Research, 2020, 80, 4004-4013.	0.4	5
18	Targeting c-Met in triple negative breast cancer: preclinical studies using the c-Met inhibitor, Cpd A. Investigational New Drugs, 2020, 38, 1365-1372.	1.2	5

#	Article	IF	CITATIONS
19	Hindsight: Review of Preclinical Disease Models for the Development of New Treatments for Uveal Melanoma. Journal of Cancer, 2021, 12, 4672-4685.	1.2	5
20	Genomic Profiling and Functional Analysis of let-7c miRNA-mRNA Interactions Identify SOX13 to Be Involved in Invasion and Progression of Pancreatic Cancer. Journal of Oncology, 2020, 2020, 1-11.	0.6	5
21	Whole-exome sequencing of long-term, never relapse exceptional responders of trastuzumab-treated HER2+ metastatic breast cancer. British Journal of Cancer, 2020, 123, 1219-1222.	2.9	4
22	The effects of lapatinib and neratinib on HER2 protein levels in breast cancer cell lines Journal of Clinical Oncology, 2012, 30, 637-637.	0.8	2
23	Met and HGF inhibition in triple-negative breast cancer cell lines Journal of Clinical Oncology, 2013, 31, 1066-1066.	0.8	1
24	Long-term survival outcomes with immune checkpoint inhibitors (ICI) in metastatic uveal melanoma (MUM) Journal of Clinical Oncology, 2021, 39, e21585-e21585.	0.8	0
25	Clinicopathological characteristics of exceptional responders who achieve durable remissions beyond five years (DR5) in HER2+(H+) metastatic breast cancer (MBC) Journal of Clinical Oncology, 2021, 39, 1046-1046.	0.8	0
26	Alternative signalling mechanisms to mediate Braf-Inhibitor resistance in isogenic primary and metastatic melanoma Journal of Clinical Oncology, 2016, 34, e21045-e21045.	0.8	0
27	Clinical Impact of Immune Checkpoint Inhibitor (ICI) Response, DNA Damage Repair (DDR) Gene Mutations and Immune-Cell Infiltration in Metastatic Melanoma Subtypes. Medical Sciences (Basel,) Tj ETQq1 1	0.7 8\$ 314	rg B T /Overlo
28	Whole genome sequencing of HER2+ metastatic breast cancer and CNA comparison between long term survivor and short-term survivor Journal of Clinical Oncology, 2022, 40, e13019-e13019.	0.8	O