
Chun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3438310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro. Carbohydrate Polymers, 2015, 130, 122-132.	5.1	230
2	Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro. Food and Function, 2016, 7, 530-539.	2.1	155
3	Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydrate Polymers, 2017, 173, 192-201.	5.1	155
4	Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: Characterization and hypoglycemic activity. Industrial Crops and Products, 2017, 100, 1-11.	2.5	154
5	Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic <i>db</i> / <i>db</i> mice. Food and Function, 2018, 9, 3732-3742.	2.1	116
6	Sulfated modification, characterization, antioxidant and hypoglycemic activities of polysaccharides from Sargassum pallidum. International Journal of Biological Macromolecules, 2019, 121, 407-414.	3.6	104
7	The effect of ultrasound irradiation on the physicochemical properties and α-glucosidase inhibitory effect of blackberry fruit polysaccharide. Food Hydrocolloids, 2019, 96, 568-576.	5.6	102
8	The digestibility of mulberry fruit polysaccharides and its impact on lipolysis under simulated saliva, gastric and intestinal conditions. Food Hydrocolloids, 2016, 58, 171-178.	5.6	101
9	Physicochemical properties and bioactivity of whey protein isolate-inulin conjugates obtained by Maillard reaction. International Journal of Biological Macromolecules, 2020, 150, 326-335.	3.6	94
10	The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Critical Reviews in Food Science and Nutrition, 2020, 60, 695-708.	5.4	93
11	Structural characterization of a novel acidic polysaccharide from <i>Rosa roxburghii</i> Tratt fruit and its α-glucosidase inhibitory activity. Food and Function, 2018, 9, 3974-3985.	2.1	87
12	Immobilization of chitosan grafted carboxylic Zr-MOF to porous starch for sulfanilamide adsorption. Carbohydrate Polymers, 2021, 253, 117305.	5.1	80
13	In vitro fermentation of mulberry fruit polysaccharides by human fecal inocula and impact on microbiota. Food and Function, 2016, 7, 4637-4643.	2.1	78
14	Comparative study on the physicochemical properties and bioactivities of polysaccharide fractions extracted from <i>Fructus Mori</i> at different temperatures. Food and Function, 2019, 10, 410-421.	2.1	67
15	A novel polysaccharide isolated from mulberry fruits (Murus alba L.) and its selenide derivative: structural characterization and biological activities. Food and Function, 2016, 7, 2886-2897.	2.1	65
16	A comparison study on polysaccharides extracted from <i>Fructus Mori</i> using different methods: structural characterization and glucose entrapment. Food and Function, 2019, 10, 3684-3695.	2.1	61
17	Physicochemical characterization, antioxidant and hypoglycemic activities of selenized polysaccharides from Sargassum pallidum. International Journal of Biological Macromolecules, 2019, 132, 308-315.	3.6	61
18	Bioaccessibility, antioxidant activity and modulation effect on gut microbiota of bioactive compounds from <i>Moringa oleifera</i> Lam. leaves during digestion and fermentation <i>in vitro</i> . Food and Function, 2019, 10, 5070-5079.	2.1	54

CHUN CHEN

#	Article	IF	CITATIONS
19	The chemical structure and biological activities of a novel polysaccharide obtained from Fructus Mori and its zinc derivative. Journal of Functional Foods, 2019, 54, 64-73.	1.6	54
20	Hypoglycemic effects of a Fructus Mori polysaccharide in vitro and in vivo. Food and Function, 2017, 8, 2523-2535.	2.1	47
21	Identification of polyphenols from Rosa roxburghii Tratt pomace and evaluation of in vitro and in vivo antioxidant activity. Food Chemistry, 2022, 377, 131922.	4.2	47
22	Digestive Property and Bioactivity of Blackberry Polysaccharides with Different Molecular Weights. Journal of Agricultural and Food Chemistry, 2019, 67, 12428-12440.	2.4	46
23	<i>Fructus mori</i> L. polysaccharide-iron chelates formed by self-embedding with iron(<scp>iii</scp>) as the core exhibit good antioxidant activity. Food and Function, 2019, 10, 3150-3160.	2.1	43
24	Mechanisms of vaporâ€phase antibacterial action of essential oil from Cinnamomum camphora var. <i>linaloofera Fujita</i> against <i>Escherichia coli</i> . Food Science and Nutrition, 2019, 7, 2546-2555.	1.5	42
25	Comparative study on the effect of extraction solvent on the physicochemical properties and bioactivity of blackberry fruit polysaccharides. International Journal of Biological Macromolecules, 2021, 183, 1548-1559.	3.6	41
26	Screening α-glucosidase inhibitors from four edible brown seaweed extracts by ultra-filtration and molecular docking. LWT - Food Science and Technology, 2021, 138, 110654.	2.5	36
27	Chemical property and impacts of different polysaccharide fractions from Fructus Mori. on lipolysis with digestion model in vitro. Carbohydrate Polymers, 2017, 178, 360-367.	5.1	34
28	Effect of Fructus Mori. bioactive polysaccharide conjugation on improving functional and antioxidant activity of whey protein. International Journal of Biological Macromolecules, 2020, 148, 761-767.	3.6	32
29	In vitro digestion of the whole blackberry fruit: bioaccessibility, bioactive variation of active ingredients and impacts on human gut microbiota. Food Chemistry, 2022, 370, 131001.	4.2	29
30	Spheroidization on Fructus Mori polysaccharides to enhance bioavailability and bioactivity by anti-solvent precipitation method. Food Chemistry, 2019, 300, 125245.	4.2	28
31	Recent advances on bioactive polysaccharides from mulberry. Food and Function, 2021, 12, 5219-5235.	2.1	27
32	The Effects of Different Purifying Methods on the Chemical Properties, in Vitro Anti-Tumor and Immunomodulatory Activities of Abrus cantoniensis Polysaccharide Fractions. International Journal of Molecular Sciences, 2016, 17, 511.	1.8	25
33	Glycation mechanism of lactoferrin–chitosan oligosaccharide conjugates with improved antioxidant activity revealed by high-resolution mass spectroscopy. Food and Function, 2020, 11, 10886-10895.	2.1	25
34	Effect of Rosa Roxburghii juice on starch digestibility: A focus on the binding of polyphenols to amylose and porcine pancreatic α-amylase by molecular modeling. Food Hydrocolloids, 2022, 123, 106966.	5.6	21
35	Study on a novel spherical polysaccharide from Fructus Mori with good antioxidant activity. Carbohydrate Polymers, 2021, 256, 117516.	5.1	20
36	Effect of chitosan oligosaccharide glycosylation on the emulsifying property of lactoferrin. International Journal of Biological Macromolecules, 2022, 209, 93-106.	3.6	19

CHUN CHEN

#	Article	IF	CITATIONS
37	Comparative assessment of phytochemical profiles and antioxidant and antiproliferative activities of kiwifruit (<i>Actinidia deliciosa</i>) cultivars. Journal of Food Biochemistry, 2019, 43, e13025.	1.2	17
38	Study on the pharmacokinetics of mulberry fruit polysaccharides through fluorescence labeling. International Journal of Biological Macromolecules, 2021, 186, 462-471.	3.6	14
39	Glycosylation with bioactive polysaccharide obtained from Rosa roxburghii Tratt fruit to enhance the oxidative stability of whey protein isolate emulsion. International Journal of Biological Macromolecules, 2022, 218, 259-268.	3.6	13
40	Investigation into the mechanisms of quercetin-3-‹i>O‹/i>-glucuronide inhibiting α-glucosidase activity and non-enzymatic glycation by spectroscopy and molecular docking. Food and Function, 2021, 12, 7825-7835.	2.1	10
41	Digestibility, bioactivity and prebiotic potential of phenolics released from whole gold kiwifruit and pomace by <i>in vitro</i> gastrointestinal digestion and colonic fermentation. Food and Function, 2020, 11, 9613-9623.	2.1	9
42	The structure, conformation, and hypoglycemic activity of a novel heteropolysaccharide from the blackberry fruit. Food and Function, 2021, 12, 5451-5464.	2.1	9
43	Preparation and characterization of Sargassum pallidum polysaccharide nanoparticles with enhanced antioxidant activity and adsorption capacity. International Journal of Biological Macromolecules, 2022, 208, 196-207.	3.6	9
44	The effect of geographic variation on chemical composition, antioxidant and hypoglycemic activities of <i>Morus alba</i> L. polysaccharides. Journal of Food Processing and Preservation, 2019, 43, e14206.	0.9	8
45	Study on the bioaccessibility of phenolic compounds and bioactivities of passion fruit juices from different regions in vitro digestion. Journal of Food Processing and Preservation, 2021, 45, .	0.9	4
46	A dynamic view on the chemical composition and bioactive properties of mulberry fruit using an <i>in vitro</i> digestion and fermentation model. Food and Function, 2022, 13, 4142-4157.	2.1	4
47	A study on the Fe ₃ O ₄ @ <i>Fructus mori</i> L. polysaccharide particles with enhanced antioxidant activity and bioavailability. Food and Function, 2020, 11, 2268-2278.	2.1	3
48	Influence of <i>Sargassum pallidum</i> and the synergistic interaction mechanism of 6-gingerol and poricoic acid A on inhibiting ovalbumin glycation. Food and Function, 2021, 12, 9315-9326.	2.1	3
49	Physical and oxidative stability of chicken oilâ€inâ€water emulsion stabilized by chicken protein hydrolysates. Food Science and Nutrition, 2020, 8, 371-378.	1.5	1