Mitchell A Avery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3438121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective Inhibition of Plasmodium falciparum ATPase 6 by Artemisinins and Identification of New Classes of Inhibitors after Expression in Yeast. Antimicrobial Agents and Chemotherapy, 2022, , e0207921.	3.2	2
2	Structure–Activity Relationships of the Antimalarial Agent Artemisinin 10. Synthesis and Antimalarial Activity of Enantiomers of rac-5β-Hydroxy-d-Secoartemisinin and Analogs: Implications Regarding the Mechanism of Action. Molecules, 2021, 26, 4163.	3.8	6
3	ldentification of a new small molecule chemotype of Melanin Concentrating Hormone Receptor-1 antagonists using pharmacophore-based virtual screening. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126741.	2.2	3
4	A pharmacokinetic comparison of homodimer ARB-92 and heterodimer ARB-89: novel, potent antimalarial candidates derived from 7β-hydroxyartemisinin. Journal of Pharmaceutical Investigation, 2018, 48, 585-593.	5.3	6
5	Click chemistry decoration of amino sterols as promising strategy to developed new leishmanicidal drugs. Steroids, 2014, 79, 28-36.	1.8	32
6	Synthesis, biological evaluation, hydration site thermodynamics, and chemical reactivity analysis of α-keto substituted peptidomimetics for the inhibition of Plasmodium falciparum. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1274-1279.	2.2	16
7	Design, synthesis and biological evaluation of novel benzothiazole and triazole analogs as falcipain inhibitors. MedChemComm, 2011, 2, 1201.	3.4	23
8	Synthesis and biological evaluation of a novel anti-malarial lead. Medicinal Chemistry Research, 2011, 20, 401-407.	2.4	3
9	Design, synthesis, and docking studies of novel telmisartan–glitazone hybrid analogs for the treatment of metabolic syndrome. Medicinal Chemistry Research, 2009, 18, 589-610.	2.4	9
10	Design, synthesis, and docking studies of telmisartan analogs for the treatment of metabolic syndrome. Medicinal Chemistry Research, 2009, 18, 611-628.	2.4	11
11	LC Determination of a Novel Synthetic Thiazolidinedione (BP-1107) in Rat Plasma and Its Application to a Pharmacokinetic Study. Chromatographia, 2008, 68, 551-555.	1.3	1
12	A Simple Synthesis of 4-Substituted 2-(3-Hydroxy-2-oxo-1-phenethylpropylcarbamoyl) pyrrolidine-1-carboxylic Acid Benzyl Esters as Novel Cysteine Protease Inhibitors. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 210-216.	0.7	3
13	Convenient Synthesis and Evaluation of Biological Activity of Benzyl (2S)-2-[(R)-1-hydroxy-2-oxo-(1-phenethyl)prop-3-ylcarbamoyl]- 4-oxopiperidine- (or) Tj ETQq1 1 0.784314 rgBT /O Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 1300-1304	verlock 1(0.7) Tf 50 262
14	Synthesis of New Î ² -Lactam Analogs and Evaluation of Their Histone Deacetylase (HDAC) Activity. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2007, 62, 1459-1464.	0.7	12
15	Recent Developments in the Syntheses of the Epothilones and Related Analogues. European Journal of Organic Chemistry, 2006, 2006, 4071-4084.	2.4	38
16	Terpenes from Eunicea Laciniata and Plexaurella Nutans. Journal of Chemical Research, 2006, 2006, 165-167.	1.3	8
17	Design, Synthesis and Evaluation of Trisubstituted Thiazoles Targeting Plasmodium Falciparum Cysteine Proteases. Medicinal Chemistry Research, 2005, 14, 74-105.	2.4	19
18	Solid-Supported Parallel Synthesis of Hydroxybenzylamine Libraries Possessing Antileishmial Activity. Medicinal Chemistry Research, 2005, 14, 332-346	2.4	1

MITCHELL A AVERY

#	Article	IF	CITATIONS
19	Biocatalysis of the Antimalarial Artemisinin byMucor ramannianus. Strains. Pharmaceutical Biology, 2005, 43, 579-582.	2.9	22
20	Structural Characterization of Vivapain-2 and Vivapain-3, Cysteine Proteases fromPlasmodium vivax: Comparative Protein Modeling and Docking Studies. Journal of Biomolecular Structure and Dynamics, 2004, 21, 781-790.	3.5	6
21	Design and Synthesis of Heterocyclic Hydroxamic Acid Derivatives as Inhibitors of HelicobacterpyloriUrease. Synthetic Communications, 2003, 33, 1977-1995.	2.1	29
22	Structureâ^'Activity Relationships of the Antimalarial Agent Artemisinin. 8. Design, Synthesis, and CoMFA Studies toward the Development of Artemisinin-Based Drugs against Leishmaniasis and Malariaâ€. Journal of Medicinal Chemistry, 2003, 46, 4244-4258.	6.4	97
23	Structureâ^ Activity Relationships of the Antimalarial Agent Artemisinin. 6. The Development of Predictive In Vitro Potency Models Using CoMFA and HQSAR Methodologies. Journal of Medicinal Chemistry, 2002, 45, 292-303.	6.4	78
24	Structureâ^'Activity Relationships of the Antimalarial Agent Artemisinin. 7. Direct Modification of (+)-Artemisinin and In Vivo Antimalarial Screening of New, Potential Preclinical Antimalarial Candidates. Journal of Medicinal Chemistry, 2002, 45, 4321-4335.	6.4	75
25	Biotransformation of 10-deoxoartemisinin to its 7β-hydroxy derivative by Mucor ramannianus. Biotechnology Letters, 2002, 24, 937-941.	2.2	24
26	Comparison of 3D quantitative structure-activity relationship methods: analysis of the in vitro antimalarial activity of 154 artemisinin analogues by hypothetical active-site lattice and comparative molecular field analysis. Journal of Computer-Aided Molecular Design, 1998, 12, 165-181.	2.9	30
27	Conjugate Addition of a Cyano-Gilman Cuprate to an Acrylic Acid: Homologation of Artemisinic Acid and Subsequent Conversion to 16-Butylartemisinin. Synthetic Communications, 1998, 28, 1555-1562.	2.1	11
28	Structureâ^'Activity Relationships of the Antimalarial Agent Artemisinin. 4. Effect of Substitution at C-3. Journal of Medicinal Chemistry, 1996, 39, 2900-2906.	6.4	62
29	Structureâ^'Activity Relationships of the Antimalarial Agent Artemisinin. 5. Analogs of 10-Deoxoartemisinin Substituted at C-3 and C-9. Journal of Medicinal Chemistry, 1996, 39, 4149-4155.	6.4	78
30	Structureâ~'Activity Relationships of the Antimalarial Agent Artemisinin. 3. Total Synthesis of (+)-13-Carbaartemisinin and Related Tetra- and Tricyclic Structures. Journal of Medicinal Chemistry, 1996, 39, 1885-1897.	6.4	77
31	Deuterated antimalarials: Synthesis of trideutero-artemisinin, dihydroartemisinin, and arteether. Journal of Labelled Compounds and Radiopharmaceuticals, 1996, 38, 249-254.	1.0	12
32	Radiolabeled antimalarials: Synthesis of 14C-artemisinin. Journal of Labelled Compounds and Radiopharmaceuticals, 1996, 38, 263-267.	1.0	12
33	Structure-Activity Relationships of the Antimalarial Agent Artemisinin. 2. Effect of Heteroatom Substitution at O-11: Synthesis and Bioassay of N-Alkyl-11-aza-9-desmethylartemisinins. Journal of Medicinal Chemistry, 1995, 38, 5038-5044.	6.4	59
34	Synthesis, conformational analysis, and antimalarial activity of tricyclic analogs of artemisinin. Tetrahedron, 1994, 50, 957-972.	1.9	58
35	Structure-activity relationships of the antimalarial agent artemisinin. 1. Synthesis and comparative molecular field analysis of C-9 analogs of artemisinin and 10-deoxoartemisinin. Journal of Medicinal Chemistry, 1993, 36, 4264-4275.	6.4	97
36	Stereoselective total synthesis of (+)-artemisinin, the antimalarial constituent of Artemisia annua L. Journal of the American Chemical Society, 1992, 114, 974-979.	13.7	246