
Maggie Chon U Cheang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/343737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. Journal of Clinical Oncology, 2009, 27, 1160-1167.	0.8	3,730
2	Race, Breast Cancer Subtypes, and Survival in the Carolina Breast Cancer Study. JAMA - Journal of the American Medical Association, 2006, 295, 2492.	3.8	3,135
3	Ki67 Index, HER2 Status, and Prognosis of Patients With Luminal B Breast Cancer. Journal of the National Cancer Institute, 2009, 101, 736-750.	3.0	1,844
4	Metastatic Behavior of Breast Cancer Subtypes. Journal of Clinical Oncology, 2010, 28, 3271-3277.	0.8	1,718
5	Breast Cancer Subtypes and the Risk of Local and Regional Relapse. Journal of Clinical Oncology, 2010, 28, 1684-1691.	0.8	1,072
6	Basal-Like Breast Cancer Defined by Five Biomarkers Has Superior Prognostic Value than Triple-Negative Phenotype. Clinical Cancer Research, 2008, 14, 1368-1376.	3.2	1,040
7	Subtyping of Breast Cancer by Immunohistochemistry to Investigate a Relationship between Subtype and Short and Long Term Survival: A Collaborative Analysis of Data for 10,159 Cases from 12 Studies. PLoS Medicine, 2010, 7, e1000279.	3.9	764
8	A Comparison of PAM50 Intrinsic Subtyping with Immunohistochemistry and Clinical Prognostic Factors in Tamoxifen-Treated Estrogen Receptor–Positive Breast Cancer. Clinical Cancer Research, 2010, 16, 5222-5232.	3.2	676
9	Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nature Medicine, 2018, 24, 628-637.	15.2	649
10	Prognostic Significance of Progesterone Receptor–Positive Tumor Cells Within Immunohistochemically Defined Luminal A Breast Cancer. Journal of Clinical Oncology, 2013, 31, 203-209.	0.8	464
11	Breast Cancer Subtypes and Response to Docetaxel in Node-Positive Breast Cancer: Use of an Immunohistochemical Definition in the BCIRG 001 Trial. Journal of Clinical Oncology, 2009, 27, 1168-1176.	0.8	461
12	Molecular Characterization of Basal-Like and Non-Basal-Like Triple-Negative Breast Cancer. Oncologist, 2013, 18, 123-133.	1.9	454
13	Molecular Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor Receptor 2 Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel Plus Trastuzumab With or Without Lapatinib. Journal of Clinical Oncology, 2016, 34, 542-549.	0.8	336
14	Use of immunohistochemical markers can refine prognosis in triple negative breast cancer. BMC Cancer, 2007, 7, 134.	1.1	316
15	Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Research and Treatment, 2012, 132, 1049-1062.	1.1	286
16	Nuclear beta-catenin in mesenchymal tumors. Modern Pathology, 2005, 18, 68-74.	2.9	268
17	Akt phosphorylates the Y-box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells. Oncogene, 2005, 24, 4281-4292.	2.6	251
18	Hierarchical Clustering Analysis of Tissue Microarray Immunostaining Data Identifies Prognostically Significant Groups of Breast Carcinoma. Clinical Cancer Research, 2004, 10, 6143-6151.	3.2	198

MAGGIE CHON U CHEANG

#	Article	IF	CITATIONS
19	Research-Based PAM50 Subtype Predictor Identifies Higher Responses and Improved Survival Outcomes in HER2-Positive Breast Cancer in the NOAH Study. Clinical Cancer Research, 2014, 20, 511-521.	3.2	191
20	PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nature Medicine, 2016, 22, 1303-1313.	15.2	188
21	Immunohistochemical Detection Using the New Rabbit Monoclonal Antibody SP1 of Estrogen Receptor in Breast Cancer Is Superior to Mouse Monoclonal Antibody 1D5 in Predicting Survival. Journal of Clinical Oncology, 2006, 24, 5637-5644.	0.8	177
22	Novel Prognostic Immunohistochemical Biomarker Panel for Estrogen Receptor–Positive Breast Cancer. Journal of Clinical Oncology, 2006, 24, 3039-3047.	0.8	172
23	Defining Breast Cancer Intrinsic Subtypes by Quantitative Receptor Expression. Oncologist, 2015, 20, 474-482.	1.9	145
24	Disruption of the Y-Box Binding Protein-1 Results in Suppression of the Epidermal Growth Factor Receptor and HER-2. Cancer Research, 2006, 66, 4872-4879.	0.4	139
25	Basal Breast Cancer Molecular Subtype Predicts for Lower Incidence of Axillary Lymph Node Metastases in Primary Breast Cancer. Clinical Breast Cancer, 2008, 8, 249-256.	1.1	135
26	Responsiveness of Intrinsic Subtypes to Adjuvant Anthracycline Substitution in the NCIC.CTG MA.5 Randomized Trial. Clinical Cancer Research, 2012, 18, 2402-2412.	3.2	132
27	Response and survival of breast cancer intrinsic subtypes following multi-agent neoadjuvant chemotherapy. BMC Medicine, 2015, 13, 303.	2.3	113
28	Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer. Npj Breast Cancer, 2020, 6, 17.	2.3	106
29	Progesterone receptor is a significant factor associated with clinical outcomes and effect of adjuvant tamoxifen therapy in breast cancer patients. Breast Cancer Research and Treatment, 2010, 119, 53-61.	1.1	102
30	Genomic Complexity Profiling Reveals That HORMAD1 Overexpression Contributes to Homologous Recombination Deficiency in Triple-Negative Breast Cancers. Cancer Discovery, 2015, 5, 488-505.	7.7	97
31	Prognostic Value of Intrinsic Subtypes in Hormone Receptor–Positive Metastatic Breast Cancer Treated With Letrozole With or Without Lapatinib. JAMA Oncology, 2016, 2, 1287.	3.4	96
32	Automated quantitative analysis of estrogen receptor expression in breast carcinoma does not differ from expert pathologist scoring: a tissue microarray study of 3,484 cases. Breast Cancer Research and Treatment, 2008, 110, 417-426.	1.1	91
33	Insulin-Like Growth Factor Binding Protein-2 Is a Novel Therapeutic Target Associated with Breast Cancer. Clinical Cancer Research, 2008, 14, 6944-6954.	3.2	71
34	Gene Expression Profiling of Breast Cancer. Annual Review of Pathology: Mechanisms of Disease, 2008, 3, 67-97.	9.6	66
35	NRG1 gene rearrangements in clinical breast cancer: identification of an adjacent novel amplicon associated with poor prognosis. Oncogene, 2005, 24, 7281-7289.	2.6	63
36	Assessment of Her-1, Her-2, and Her-3 Expression and Her-2 Amplification in Advanced Stage Ovarian Carcinoma. International Journal of Gynecological Pathology, 2005, 24, 147-152.	0.9	62

#	Article	IF	CITATIONS
37	MDM2 protein expression is a negative prognostic marker in breast carcinoma. Modern Pathology, 2006, 19, 69-74.	2.9	62
38	Assessment of Topoisomerase II α Status in Breast Cancer by Quantitative PCR, Gene Expression Microarrays, Immunohistochemistry, and Fluorescence in Situ Hybridization. American Journal of Pathology, 2011, 178, 1453-1460.	1.9	59
39	Predicting Drug Responsiveness in Human Cancers Using Genetically Engineered Mice. Clinical Cancer Research, 2013, 19, 4889-4899.	3.2	56
40	Best Practices for Spatial Profiling for Breast Cancer Research with the GeoMx® Digital Spatial Profiler. Cancers, 2021, 13, 4456.	1.7	50
41	Heterocellular gene signatures reveal luminal-A breast cancer heterogeneity and differential therapeutic responses. Npj Breast Cancer, 2019, 5, 21.	2.3	43
42	Changes in Expression of Genes Representing Key Biologic Processes after Neoadjuvant Chemotherapy in Breast Cancer, and Prognostic Implications in Residual Disease. Clinical Cancer Research, 2016, 22, 2405-2416.	3.2	41
43	TMA-Combiner, a simple software tool to permit analysis of replicate cores on tissue microarrays. Modern Pathology, 2005, 18, 1641-1648.	2.9	37
44	$\hat{I}\pm B$ -crystallin expression in breast cancer is associated with brain metastasis. Npj Breast Cancer, 2015, 1, .	2.3	30
45	Development of a Ki-67-based clinical trial assay for neoadjuvant endocrine therapy response monitoring in breast cancer. Breast Cancer Research and Treatment, 2017, 165, 355-364.	1.1	26
46	Intrinsic Subtype and Therapeutic Response Among HER2-Positive Breaty st Tumors from the NCCTG (Alliance) N9831 Trial. Journal of the National Cancer Institute, 2017, 109, djw207.	3.0	26
47	Heterogeneity in global gene expression profiles between biopsy specimens taken peri-surgically from primary ER-positive breast carcinomas. Breast Cancer Research, 2016, 18, 39.	2.2	24
48	Intrinsic subtypes and benefit from postmastectomy radiotherapy in node-positive premenopausal breast cancer patients who received adjuvant chemotherapy – results from two independent randomized trials. Acta OncolÃ3gica, 2018, 57, 38-43.	0.8	22
49	Early Enrichment of ESR1 Mutations and the Impact on Gene Expression in Presurgical Primary Breast Cancer Treated with Aromatase Inhibitors. Clinical Cancer Research, 2019, 25, 7485-7496.	3.2	18
50	A Four-gene Decision Tree Signature Classification of Triple-negative Breast Cancer: Implications for Targeted Therapeutics. Molecular Cancer Therapeutics, 2019, 18, 204-212.	1.9	17
51	Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials. Npj Breast Cancer, 2020, 6, 15.	2.3	16
52	Impact of aromatase inhibitor treatment on global gene expression and its association with antiproliferative response in ER+ breast cancer in postmenopausal patients. Breast Cancer Research, 2020, 22, 2.	2.2	15
53	Quantitative hormone receptors, triple-negative breast cancer (TNBC), and molecular subtypes: A collaborative effort of the BIG-NCI NABCG Journal of Clinical Oncology, 2012, 30, 1008-1008.	0.8	14
54	Gene expression signatures in pre- and post-therapy (Rx) specimens from CALGB 40601 (Alliance), a neoadjuvant phase III trial of weekly paclitaxel and trastuzumab with or without lapatinib for HER2-positive breast cancer (BrCa) Journal of Clinical Oncology, 2014, 32, 506-506.	0.8	13

#	Article	IF	CITATIONS
55	Proteomic profiling of soft tissue sarcomas with SWATH mass spectrometry. Journal of Proteomics, 2021, 241, 104236.	1.2	12
56	Radiation-Induced Gene Signature Predicts Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. Radiation Research, 2014, 181, 193.	0.7	11
57	Major Impact of Sampling Methodology on Gene Expression in Estrogen Receptor–Positive Breast Cancer. JNCI Cancer Spectrum, 2018, 2, pky005.	1.4	11
58	Development and validation for research assessment of Oncotype DX® Breast Recurrence Score, EndoPredict® and Prosigna®. Npj Breast Cancer, 2021, 7, 15.	2.3	11
59	Evaluation of the adjuvant radiation treatment-effect heterogeneity using genomic signature for locoregional relapse and long-term outcome Journal of Clinical Oncology, 2014, 32, 1031-1031.	0.8	11
60	Biomarkers of Response and Resistance to Palbociclib Plus Letrozole in Patients With ER+/HER2â^' Breast Cancer. Clinical Cancer Research, 2022, 28, 163-174.	3.2	8
61	Novel 18-gene signature for predicting relapse in ER-positive, HER2-negative breast cancer. Breast Cancer Research, 2018, 20, 103.	2.2	7
62	3D Functional Genomics Screens Identify CREBBP as a Targetable Driver in Aggressive Triple-Negative Breast Cancer. Cancer Research, 2021, 81, 847-859.	0.4	7
63	Intratumoral Transcriptome Heterogeneity Is Associated With Patient Prognosis and Sidedness in Patients With Colorectal Cancer Treated With Anti-EGFR Therapy From the CO.20 Trial. JCO Precision Oncology, 2020, 4, 1152-1162.	1.5	6
64	Impact of Duration of Neoadjuvant Aromatase Inhibitors on Molecular Expression Profiles in Estrogen Receptor–positive Breast Cancers. Clinical Cancer Research, 2022, 28, 1217-1228.	3.2	6
65	Identifying Biomarkers to Pair with Targeting Treatments within Triple Negative Breast Cancer for Improved Patient Stratification. Cancers, 2019, 11, 1864.	1.7	5
66	Dissecting the predictive value of MAPK/AKT/estrogen-receptor phosphorylation axis in primary breast cancer to treatment response for tamoxifen over exemestane: a Translational Report of the Intergroup Exemestane Study (IES)—PathIES. Breast Cancer Research and Treatment, 2019, 175, 149-163.	1.1	4
67	A molecular signature predictive of clinical outcome following pazopanib therapy in advanced soft tissue sarcoma. Annals of Oncology, 2017, 28, x149.	0.6	2
68	Reply to R.S. Mehta et al. Journal of Clinical Oncology, 2009, 27, 3068-3069.	0.8	1
69	Impact of the menstrual cycle on commercial prognostic gene signatures in oestrogen receptor-positive primary breast cancer. Breast Cancer Research and Treatment, 2021, 190, 295-305.	1.1	1
70	Concordance of intrinsic subtyping and risk of recurrence (ROR) scores between matched primary and metastatic tissue from Triple Negative Breast Cancer Trial (TNT) Journal of Clinical Oncology, 2015, 33, 1019-1019.	0.8	1
71	Association of a four-gene decision tree signature with response to platinum-based chemotherapy in patients with triple negative breast cancer Journal of Clinical Oncology, 2017, 35, 1006-1006.	0.8	1
72	Genomic Instability and TP53 Genomic Alterations Associate With Poor Antiproliferative Response and Intrinsic Resistance to Aromatase Inhibitor Treatment. JCO Precision Oncology, 2019, 3, 1-11.	1.5	0

#	Article	IF	CITATIONS
73	Lights and Shadows in Immuno-Oncology Drug Development. Cancers, 2021, 13, 691.	1.7	0