Marko Spasenović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3435889/publications.pdf

Version: 2024-02-01

39 papers

3,031 citations

430874 18 h-index 32 g-index

42 all docs

42 docs citations

42 times ranked 4341 citing authors

#	Article	IF	CITATIONS
1	Noise Spectrum as a Source of Information in Gas Sensors Based on Liquid-Phase Exfoliated Graphene. Chemosensors, 2022, 10, 224.	3.6	1
2	Field Effect and Local Gating in Nitrogenâ€Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene. ChemPhysChem, 2021, 22, 336-341.	2.1	5
3	Ultrafast humidity sensor based on liquid phase exfoliated graphene. Nanotechnology, 2021, 32, 025505.	2.6	11
4	Carbon Dioxide Sensing with Langmuir–Blodgett Graphene Films. Chemosensors, 2021, 9, 342.	3 . 6	7
5	Low-friction, wear-resistant, and electrically homogeneous multilayer graphene grown by chemical vapor deposition on molybdenum. Applied Surface Science, 2020, 509, 144792.	6.1	14
6	Monolayer Gas Adsorption on Graphene-Based Materials: Surface Density of Adsorption Sites and Adsorption Capacity. Surfaces, 2020, 3, 423-432.	2.3	4
7	DNA Sequencing with Single-Stranded DNA Rectification in a Nanogap Gated by N-Terminated Carbon Nanotube Electrodes. ACS Applied Nano Materials, 2020, 3, 3034-3043.	5.0	15
8	DFT study of optical properties of MoS2 and WS2 compared to spectroscopic results on liquid phase exfoliated nanoflakes. Optical and Quantum Electronics, 2018, 50, 1.	3.3	8
9	Reducing sheet resistance of self-assembled transparent graphene films by defect patching and doping with UV/ozone treatment. Applied Surface Science, 2018, 458, 446-453.	6.1	25
10	Optically levitated nanoparticle as a model system for stochastic bistable dynamics. Nature Communications, 2017, 8, 15141.	12.8	84
11	Miniature graphene-based supercapacitors fabricated by laser ablation. Microelectronic Engineering, 2017, 182, 1-7.	2.4	15
12	Transparent and conductive films from liquid phase exfoliated graphene. Optical and Quantum Electronics, 2016, 48, 1.	3.3	21
13	Enhanced sheet conductivity of Langmuir–Blodgett assembled graphene thin films by chemical doping. 2D Materials, 2016, 3, 015002.	4.4	26
14	Cooling and manipulation of a levitated nanoparticle with an optical fiber trap. Applied Physics Letters, 2015, 107, .	3.3	51
15	Bistable dynamics of a levitated nanoparticle (Presentation Recording). Proceedings of SPIE, 2015, , .	0.8	0
16	Multilayer graphene condenser microphone. 2D Materials, 2015, 2, 045013.	4.4	63
17	Nonlinear Mode Coupling and Synchronization of a Vacuum-Trapped Nanoparticle. Physical Review Letters, 2014, 112, 103603.	7.8	53
18	Magnetic and electric response of single subwavelength holes. Physical Review B, 2013, 88, .	3.2	32

#	Article	IF	Citations
19	Plasmonic scattering from single subwavelength holes: Separating the electric and magnetic contributions., 2013,,.		0
20	Measuring the spatial extent of individual localized photonic states. Physical Review B, 2012, 86, .	3.2	13
21	Plasmon Scattering from Single Subwavelength Holes. Physical Review Letters, 2012, 108, 127402.	7.8	69
22	Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487, 77-81.	27.8	1,820
23	Slow-light and evanescent modes at interfaces in photonic crystal waveguides: optimal extraction from experimental near-field measurements. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 955.	2.1	12
24	Experimental observation of evanescent modes at the interface to slow-light photonic crystal waveguides. Optics Letters, 2011, 36, 1170.	3.3	24
25	Nanohole Chains for Directional and Localized Surface Plasmon Excitation. Nano Letters, 2010, 10, 286-290.	9.1	50
26	Statistical fluctuations of transmission in slow light photonic-crystal waveguides. Optics Express, 2010, 18, 14654.	3.4	39
27	Characterization of bending losses for curved plasmonic nanowire waveguides. Optics Express, 2010, 18, 16112.	3.4	36
28	Loss engineered slow light waveguides. Optics Express, 2010, 18, 27627.	3.4	182
29	Observation of Evanescent Modes in Slow Light Photonic Crystal Waveguides. , 2010, , .		0
30	Measurements of modal symmetry in subwavelength plasmonic slot waveguides. Applied Physics Letters, 2009, 95, 203109.	3.3	12
31	Near-field observation of modes in subwavelength plasmonic slot waveguides. , 2009, , .		0
32	Nanowire Plasmon Excitation by Adiabatic Mode Transformation. Physical Review Letters, 2009, 102, 203904.	7.8	219
33	Phase-Sensitive near-Field Study of Surface Plasmon Polaritons Launched by Chains of Subwavelength Holes in Gold Films. , 2009, , .		0
34	All-optical injection of ballistic electrical currents in unbiased silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 340-342.	0.8	1
35	All-optical coherent control of electrical currents in centrosymmetric semiconductors. Physical Review B, 2008, 77, .	3.2	39
36	THz Emission from transient electrical currents injected into semiconductors via optical quantum interference., 2008, , .		0

#	Article	IF	CITATIONS
37	Quantum Interference Control of Electrical Currents in Silicon. , 2007, , .		O
38	All-optical injection of ballistic electrical currents in unbiased silicon. Nature Physics, 2007, 3, 632-635.	16.7	72
39	Graphene Market Review. , 0, , 177-187.		4