
Faruk Djodjic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3435494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorus Leaching in Relation to Soil Type and Soil Phosphorus Content. Journal of Environmental Quality, 2004, 33, 678-684.	2.0	243
2	Future agriculture with minimized phosphorus losses to waters: Research needs and direction. Ambio, 2015, 44, 163-179.	5.5	210
3	Topsoil and Subsoil Properties Influence Phosphorus Leaching from Four Agricultural Soils. Journal of Environmental Quality, 2013, 42, 455-463.	2.0	103
4	Challenges of Reducing Phosphorus Based Water Eutrophication in the Agricultural Landscapes of Northwest Europe. Frontiers in Marine Science, 2018, 5, .	2.5	91
5	Mode of Transport of Surfaceâ€Applied Phosphorusâ€33 through a Clay and Sandy Soil. Journal of Environmental Quality, 1999, 28, 1273-1282.	2.0	82
6	Turnover and Losses of Phosphorus in Swedish Agricultural Soils: Long-Term Changes, Leaching Trends, and Mitigation Measures. Journal of Environmental Quality, 2015, 44, 512-523.	2.0	76
7	Identification and quantification of organic phosphorus forms in soils from fertility experiments. Soil Use and Management, 2013, 29, 24-35.	4.9	68
8	Review of indexing tools for identifying high risk areas of phosphorus loss in Nordic catchments. Journal of Hydrology, 2008, 349, 68-87.	5.4	61
9	Phosphorus Leaching in Relation to Soil Type and Soil Phosphorus Content. Journal of Environmental Quality, 2004, 33, 678.	2.0	56
10	Temporal and spatial variations of phosphorus losses and drainage in a structured clay soil. Water Research, 2000, 34, 1687-1695.	11.3	49
11	The Role of Subsoil as a Source or Sink for Phosphorus Leaching. Journal of Environmental Quality, 2015, 44, 535-544.	2.0	45
12	A sub-field scale critical source area index for legacy phosphorus management using high resolution data. Agriculture, Ecosystems and Environment, 2016, 233, 238-252.	5.3	40
13	Particulate phosphorus and suspended solids losses from small agricultural catchments: Links to stream and catchment characteristics. Science of the Total Environment, 2020, 711, 134616.	8.0	39
14	Phosphorus losses from arable fields in Sweden?effects of field-specific factors and long-term trends. Environmental Monitoring and Assessment, 2005, 102, 103-117.	2.7	36
15	A Decision Support System for Phosphorus Management at a Watershed Scale. Journal of Environmental Quality, 2002, 31, 937-945.	2.0	34
16	Distributed, high-resolution modelling of critical source areas for erosion and phosphorus losses. Ambio, 2015, 44, 241-251.	5.5	29
17	A Decision Support System for Phosphorus Management at a Watershed Scale. Journal of Environmental Quality, 2002, 31, 937.	2.0	26
18	Conditional Phosphorus Index as an Educational Tool for Risk Assessment and Phosphorus Management, Ambio, 2005, 34, 296-300.	5.5	25

Faruk Djodjic

#	Article	IF	CITATIONS
19	Land use, geology and soil properties control nutrient concentrations in headwater streams. Science of the Total Environment, 2021, 772, 145108.	8.0	25
20	Hydrologic Extremes and Legacy Sources Can Override Efforts to Mitigate Nutrient and Sediment Losses at the Catchment Scale. Journal of Environmental Quality, 2019, 48, 1314-1324.	2.0	22
21	A Global Perspective on Phosphorus Management Decision Support in Agriculture: Lessons Learned and Future Directions. Journal of Environmental Quality, 2019, 48, 1218-1233.	2.0	22
22	The need for an improved risk index for phosphorus losses to water from tile-drained agricultural land. Journal of Hydrology, 2011, 400, 234-243.	5.4	20
23	From single fields to river basins: Identification of critical source areas for erosion and phosphorus losses at high resolution. Ambio, 2019, 48, 1129-1142.	5.5	16
24	How effective are River Basin Management Plans in reaching the nutrient load reduction targets?. Ambio, 2021, 50, 706-722.	5.5	16
25	Process Based Modelling of Phosphorus Losses from Arable Land. Ambio, 2010, 39, 100-115.	5.5	14
26	Changes in plantâ€available and easily soluble phosphorus within 1 year after P amendment. Soil Use and Management, 2013, 29, 45-54.	4.9	14
27	Soil properties currently limiting crop yields in Swedish agriculture – An analysis of 90 yield survey districts and 10 long-term field experiments. European Journal of Agronomy, 2020, 120, 126132.	4.1	13
28	Scaling issues in sustainable management of nutrient losses. Soil Use and Management, 2005, 21, 160-166.	4.9	12
29	Targeting critical source areas for phosphorus losses: Evaluation with soil testing, farmers' assessment and modelling. Ambio, 2018, 47, 45-56.	5.5	11
30	Soil dispersion tests combined with topographical information can describe fieldâ€scale sediment and phosphorus losses. Soil Use and Management, 2014, 30, 342-350.	4.9	10
31	Conditional Phosphorus Index as an Educational Tool for Risk Assessment and Phosphorus Management. Ambio, 2005, 34, 296.	5.5	9
32	Barium as a Potential Indicator of Phosphorus in Agricultural Runoff. Journal of Environmental Quality, 2012, 41, 208-216.	2.0	8
33	Screening risk areas for sediment and phosphorus losses to improve placement of mitigation measures. Ambio, 2015, 44, 612-623.	5.5	8
34	Optimizing placement of constructed wetlands at landscape scale in order to reduce phosphorus losses. Ambio, 2020, 49, 1797-1807.	5.5	7
35	Phosphorus management in balanced agricultural systems. Soil Use and Management, 2005, 21, 94-101.	4.9	6
36	Long-term temporal dynamics and trends of particle-bound phosphorus and nitrate in agricultural stream waters. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, 62, 217-228.	0.6	4

Faruk Djodjic

#	Article	IF	CITATIONS
37	Identification of critical source areas for erosion and phosphorus losses in small agricultural catchment in central Sweden. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, 62, 229-240.	0.6	3
38	Assessing soil erodibility and mobilization of phosphorus from Swedish clay soils – Comparison of two simple soil dispersion methods. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, 62, 260-269.	0.6	3
39	Variability in fluvial suspended and streambed sediment phosphorus fractions among small agricultural streams. Journal of Environmental Quality, 2021, 50, 612-626.	2.0	3
40	Factors affecting the Significance of Macropore Flow for Leaching of Agrochemicals. , 0, , .		1
41	Are tillage practices and incorporation of phosphorus fertilizers ways to reduce phosphorus losses caused by preferential flow?. , 0, , .		0