Joshua M Stuart

List of Publications by Citations

Source: https://exaly.com/author-pdf/3435176/joshua-m-stuart-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25,156 48 104 91 h-index g-index citations papers 5.82 19.2 104 34,700 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
91	The Cancer Genome Atlas Pan-Cancer analysis project. <i>Nature Genetics</i> , 2013 , 45, 1113-20	36.3	3933
90	The somatic genomic landscape of glioblastoma. <i>Cell</i> , 2013 , 155, 462-77	56.2	2900
89	The Immune Landscape of Cancer. <i>Immunity</i> , 2018 , 48, 812-830.e14	32.3	1754
88	A gene-coexpression network for global discovery of conserved genetic modules. <i>Science</i> , 2003 , 302, 249-55	33.3	1618
87	International network of cancer genome projects. <i>Nature</i> , 2010 , 464, 993-8	50.4	1613
86	Oncogenic Signaling Pathways in The Cancer Genome Atlas. <i>Cell</i> , 2018 , 173, 321-337.e10	56.2	1124
85	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. <i>Cell</i> , 2018 , 173, 400-416.e11	56.2	1072
84	Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. <i>Cell</i> , 2014 , 158, 929-944	56.2	935
83	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. <i>Cell</i> , 2018 , 173, 291-304.e6	56.2	888
82	Comprehensive Characterization of Cancer Driver Genes and Mutations. <i>Cell</i> , 2018 , 173, 371-385.e18	56.2	854
81	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. <i>Cell</i> , 2018 , 173, 338-354.e15	56.2	560
80	A gene expression map for Caenorhabditis elegans. <i>Science</i> , 2001 , 293, 2087-92	33.3	552
79	Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. <i>Bioinformatics</i> , 2010 , 26, i237-45	7.2	537
78	Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. <i>Cancer Cell</i> , 2017 , 32, 204-220.e15	24.3	391
77	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-6	8 9. ę3	377
76	Subtype and pathway specific responses to anticancer compounds in breast cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 2724-9	11.5	347
75	Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. <i>Cancer Cell</i> , 2018 , 34, 211-224.e6	24.3	327

(2015-2018)

74	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. <i>Cell Systems</i> , 2018 , 6, 271-281.e7	10.6	320
73	Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions. <i>Cell Stem Cell</i> , 2015 , 17, 35-46	18	301
72	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. <i>Cancer Cell</i> , 2018 , 33, 690-705.e9	24.3	277
71	Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. <i>Journal of Clinical Oncology</i> , 2018 , 36, 2492-2503	2.2	271
70	Pathway and network analysis of cancer genomes. <i>Nature Methods</i> , 2015 , 12, 615-621	21.6	235
69	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. <i>Cell</i> , 2018 , 174, 758-769.e9	56.2	234
68	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell, 2018, 33, 721-735.e8	324.3	228
67	Analyses of non-coding somatic drivers in 2,658 Lancer whole genomes. <i>Nature</i> , 2020 , 578, 102-111	50.4	220
66	Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. <i>Nature Methods</i> , 2015 , 12, 623-30	21.6	201
65	Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Reports, 2018, 23, 3392-340	6 10.6	200
64	N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells. <i>Cancer Cell</i> , 2016 , 29, 536-547	24.3	189
63	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. <i>Cell Reports</i> , 2018 , 23, 282-296.e4	10.6	188
62	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. <i>Cell</i> , 2018 , 173, 305-320.e10	56.2	166
61	Inferring causal molecular networks: empirical assessment through a community-based effort. <i>Nature Methods</i> , 2016 , 13, 310-8	21.6	158
60	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. <i>Cell Reports</i> , 2018 , 23, 194-212.e6	10.6	146
59	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. <i>Cell</i> , 2018 , 173, 386-399.	e5162 .2	133
58	Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer. <i>Cell</i> , 2016 , 166, 1041-1054	56.2	132
57	A basal stem cell signature identifies aggressive prostate cancer phenotypes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E6544-52	11.5	131

56	Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE). <i>Bioinformatics</i> , 2013 , 29, 2757-64	7.2	128
55	A global analysis of genetic interactions in Caenorhabditis elegans. <i>Journal of Biology</i> , 2007 , 6, 8		120
54	Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. <i>Cell Reports</i> , 2018 , 23, 255-269.e4	10.6	112
53	PARADIGM-SHIFT predicts the function of mutations in multiple cancers using pathway impact analysis. <i>Bioinformatics</i> , 2012 , 28, i640-i646	7.2	74
52	Towards zoomable multidimensional maps of the cell. <i>Nature Biotechnology</i> , 2007 , 25, 547-54	44.5	73
51	Pan-cancer analysis of whole genomes		70
50	Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. <i>Cell Reports</i> , 2018 , 23, 172-180.e3	10.6	66
49	Pathway-Based Genomics Prediction using Generalized Elastic Net. <i>PLoS Computational Biology</i> , 2016 , 12, e1004790	5	60
48	RADIA: RNA and DNA integrated analysis for somatic mutation detection. <i>PLoS ONE</i> , 2014 , 9, e111516	3.7	59
47	VisANT 3.0: new modules for pathway visualization, editing, prediction and construction. <i>Nucleic Acids Research</i> , 2007 , 35, W625-32	20.1	58
46	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. Cell Reports, 2018, 23, 213-	2 26. @3	56
45	TumorMap: Exploring the Molecular Similarities of Cancer Samples in an Interactive Portal. <i>Cancer Research</i> , 2017 , 77, e111-e114	10.1	43
44	Pathway and network analysis of more than 2500 whole cancer genomes. <i>Nature Communications</i> , 2020 , 11, 729	17.4	38
43	Global optimization of somatic variant identification in cancer genomes with a global community challenge. <i>Nature Genetics</i> , 2014 , 46, 318-319	36.3	36
42	A community effort to create standards for evaluating tumor subclonal reconstruction. <i>Nature Biotechnology</i> , 2020 , 38, 97-107	44.5	35
41	A factor graph nested effects model to identify networks from genetic perturbations. <i>PLoS Computational Biology</i> , 2009 , 5, e1000274	5	32
40	Toward better benchmarking: challenge-based methods assessment in cancer genomics. <i>Genome Biology</i> , 2014 , 15, 462	18.3	29
39	Combining accurate tumor genome simulation with crowdsourcing to benchmark somatic structural variant detection. <i>Genome Biology</i> , 2018 , 19, 188	18.3	29

(2021-2020)

38	with enzalutamide resistance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 12315-12323	11.5	28	
37	ONE-CLASS DETECTION OF CELL STATES IN TUMOR SUBTYPES. <i>Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing</i> , 2016 , 21, 405-16	1.3	27	
36	The NIH BD2K center for big data in translational genomics. <i>Journal of the American Medical Informatics Association: JAMIA</i> , 2015 , 22, 1143-7	8.6	24	
35	The UCSC Interaction Browser: multidimensional data views in pathway context. <i>Nucleic Acids Research</i> , 2013 , 41, W218-24	20.1	20	
34	Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. <i>Developmental Cell</i> , 2021 , 56, 292-309.e9	10.2	17	
33	Computational Identification of Tumor Anatomic Location Associated with Survival in 2 Large Cohorts of Human Primary Glioblastomas. <i>American Journal of Neuroradiology</i> , 2016 , 37, 621-8	4.4	16	
32	A Community Challenge for Inferring Genetic Predictors of Gene Essentialities through Analysis of a Functional Screen of Cancer Cell Lines. <i>Cell Systems</i> , 2017 , 5, 485-497.e3	10.6	14	
31	Biological process activity transformation of single cell gene expression for cross-species alignment. <i>Nature Communications</i> , 2019 , 10, 4899	17.4	11	
30	ONE-CLASS DETECTION OF CELL STATES IN TUMOR SUBTYPES 2016 ,		11	
29	Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges. <i>Genome Biology</i> , 2019 , 20, 195	18.3	10	
28	Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. <i>Nature Communications</i> , 2020 , 11, 4748	17.4	10	
27	Prophetic Granger Causality to infer gene regulatory networks. <i>PLoS ONE</i> , 2017 , 12, e0170340	3.7	9	
26	Revealing cancer subtypes with higher-order correlations applied to imaging and omics data. <i>BMC Medical Genomics</i> , 2017 , 10, 20	3.7	7	
25	Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla. <i>PLoS ONE</i> , 2016 , 11, e0155839	3.7	6	
24	Comparative RNA-Sequencing Analysis Benefits a Pediatric Patient With Relapsed Cancer. <i>JCO Precision Oncology</i> , 2018 , 2,	3.6	6	
23	Germline contamination and leakage in whole genome somatic single nucleotide variant detection. <i>BMC Bioinformatics</i> , 2018 , 19, 28	3.6	5	
22	A search engine to identify pathway genes from expression data on multiple organisms. <i>BMC Systems Biology</i> , 2007 , 1, 20	3.5	5	
21	Clinical and genomic characterization of Low PSA Secretors: a unique subset of metastatic castration resistant prostate cancer. <i>Prostate Cancer and Prostatic Diseases</i> , 2021 , 24, 81-87	6.2	5	

20	Information-based methods for predicting gene function from systematic gene knock-downs. <i>BMC Bioinformatics</i> , 2008 , 9, 463	3.6	4
19	Pathway and network analysis of more than 2,500 whole cancer genomes		4
18	Copy Number Loss of 17q22 Is Associated with Enzalutamide Resistance and Poor Prognosis in Metastatic Castration-Resistant Prostate Cancer. <i>Clinical Cancer Research</i> , 2020 , 26, 4616-4624	12.9	4
17	Down-regulation of ADRB2 expression is associated with small cell neuroendocrine prostate cancer and adverse clinical outcomes in castration-resistant prostate cancer. <i>Urologic Oncology: Seminars and Original Investigations</i> , 2020 , 38, 931.e9-931.e16	2.8	3
16	Accurate cancer phenotype prediction with AKLIMATE, a stacked kernel learner integrating multimodal genomic data and pathway knowledge. <i>PLoS Computational Biology</i> , 2021 , 17, e1008878	5	3
15	A community challenge to evaluate RNA-seq, fusion detection, and isoform quantification methods for cancer discovery. <i>Cell Systems</i> , 2021 , 12, 827-838.e5	10.6	3
14	VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics. <i>Nature Communications</i> , 2021 , 12, 5684	17.4	3
13	Exploring Integrative Analysis Using the BioMedical Evidence Graph. <i>JCO Clinical Cancer Informatics</i> , 2020 , 4, 147-159	5.2	2
12	The molecular and pathway characterization of patients with metastatic castration resistant prostate cancer (mCRPC) refractory to therapy with abiraterone acetate or enzalutamide: Preliminary results from the SU2C/PCF/AACR West Coast Prostate Cancer Dream Team (WCDT)	2.2	2
11	Journal of Clinical Oncology, 2014 , 32, 79-79 Prioritizing transcriptional factors in gene regulatory networks with PageRank. <i>IScience</i> , 2021 , 24, 1020	18 .1	2
10	Comprehensive molecular profiling of urothelial bladder cancer at the DNA, RNA, and protein levels: A TCGA project <i>Journal of Clinical Oncology</i> , 2014 , 32, 4509-4509	2.2	1
9	Highly Accurate Cancer Phenotype Prediction with AKLIMATE, a Stacked Kernel Learner Integrating Multimodal Genomic Data and Pathway Knowledge		1
8	Towards Inferring Nanopore Sequencing Ionic Currents from Nucleotide Chemical Structures		1
7	Valection: design optimization for validation and verification studies. <i>BMC Bioinformatics</i> , 2018 , 19, 339	3.6	1
6	Dual RNA-Seq analysis of SARS-CoV-2 correlates specific human transcriptional response pathways directly to viral expression <i>Scientific Reports</i> , 2022 , 12, 1329	4.9	О
5	Towards inferring nanopore sequencing ionic currents from nucleotide chemical structures. <i>Nature Communications</i> , 2021 , 12, 6545	17.4	О
4	Bioinformatic Approaches and Computational Models for Data Integration and Cross-Species Extrapolation in the Postgenomic Era 2006 , 103-149		
3	Pathway-based signature analysis of RNA-seq data to reveal new targetable avenues for metastatic castration-resistant prostate cancer (mCRPC) patients (pts): Preliminary results from the SU2C/PCF/AACR West Coast Prostate Cancer Dream Team (WCDT) Journal of Clinical Oncology,	2.2	

LIST OF PUBLICATIONS

	Whole genome sequencing to characterize luminal-type breast cancer Journal of Clinical Oncology,	
2	2012 30 503-503	2.2

Identification of polo-like kinase 1 (PLK1) in aggressive prostate cancer by paradigm analysis.. *Journal of Clinical Oncology*, **2013**, 31, 5006-5006

2.2